

Anti-ATP5L Antibody

Description Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an

electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, which comprises the proton channel. The F1 complex consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled in a ratio of 3 alpha, 3 beta, and a single representative of the other 3. The Fo seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the g subunit of the Fo complex. Alternative splicing results in multiple transcript variants.

Model STJ113620

Host Rabbit

Reactivity Human, Mouse, Rat

Applications WB

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 1-103 of human ATP5L (NP_006467.4).

Gene ID 10632

Gene Symbol ATP5L

Dilution range WB 1:500 - 1:2000

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name ATP synthase subunit g mitochondrial ATPase subunit g

Molecular Weight 11.428 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:14247OMIM:617473Reactome:R-HSA-163210

Alternative Names ATP synthase subunit g mitochondrial ATPase subunit g

Function Mitochondrial membrane ATP synthase (F(1)F(0)) ATP synthase or Complex

V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain, F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk, During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation, Part of the complex F(0) domain, Minor subunit located with

subunit a in the membrane

Cellular Localization Mitochondrion, Mitochondrion inner membrane

St John's Laboratory Ltd

F +44 (0)207 681 2580 **T** +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com