

Anti-KCNN1 Antibody

Description

Action potentials in vertebrate neurons are followed by an afterhyperpolarization (AHP) that may persist for several seconds and may have profound consequences for the firing pattern of the neuron. Each component of the AHP is kinetically distinct and is mediated by different calcium-activated potassium channels. The protein encoded by this gene is activated before membrane hyperpolarization and is thought to regulate neuronal excitability by contributing to the slow component of synaptic AHP. The encoded protein is an integral membrane protein that forms a voltage-independent calcium-activated channel with three other calmodulin-binding subunits. This gene is a member of the KCNN family of potassium channel genes.

Model STJ113634

Host Rabbit

Reactivity Human, Mouse

Applications WB

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 1-90 of human KCNN1 (NP_002239.2).

Gene ID 3780

Gene Symbol KCNN1

Dilution range WB 1:500 - 1:2000

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name Small conductance calcium-activated potassium channel protein 1 SK1 SKCa

1 SKCa1 KCa2.1

Molecular Weight 59.987 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:6290OMIM:602982Reactome:R-HSA-1296052

Alternative Names Small conductance calcium-activated potassium channel protein 1 SK1 SKCa

1 SKCa1 KCa2.1

Function Forms a voltage-independent potassium channel activated by intracellular

calcium, Activation is followed by membrane hyperpolarization, Thought to regulate neuronal excitability by contributing to the slow component of synaptic afterhyperpolarization, The channel is blocked by apamin ,

Cellular Localization Membrane

St John's Laboratory Ltd F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com