
Anti-OAS3 Antibody

Description This gene encodes an enzyme included in the 2', 5' oligoadenylate

synthase family. This enzyme is induced by interferons and catalyzes the 2', 5' oligomers of adenosine in order to bind and activate RNase L. This enzyme family plays a significant role in the inhibition of cellular protein synthesis and viral infection resistance.

Model STJ113646

Host Rabbit

Reactivity Human

Applications WB

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 320-620 of human OAS3 (NP_006178.2).

Gene ID 4940

Gene Symbol OAS3

Dilution range WB 1:500 - 1:2000

Tissue Specificity Present at high level in placenta trophoblast

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name 2'-5'-oligoadenylate synthase 3 (2-5' oligo(A synthase 3 2-5A synthase 3

Molecular Weight 121.17 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:80880MIM:603351Reactome:R-HSA-877300

Alternative Names 2'-5'-oligoadenylate synthase 3 (2-5' oligo(A synthase 3 2-5A synthase 3

Function Interferon-induced, dsRNA-activated antiviral enzyme which plays a critical

role in cellular innate antiviral response, In addition, it may also play a role in other cellular processes such as apoptosis, cell growth, differentiation and gene regulation, Synthesizes preferentially dimers of 2'-5'-oligoadenylates (2-5A) from ATP which then bind to the inactive monomeric form of ribonuclease L (RNase L) leading to its dimerization and subsequent activation, Activation of RNase L leads to degradation of cellular as well as viral RNA, resulting in the inhibition of protein synthesis, thus terminating viral replication, Can mediate the antiviral effect via the classical RNase L-dependent pathway or an alternative antiviral pathway independent of RNase L, Displays antiviral activity against Chikungunya virus (CHIKV), Dengue

virus, Sindbis virus (SINV) and Semliki forest virus (SFV),

Cellular Localization Cytoplasm, Nucleus

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com