

Anti-KCNJ3 Antibody

Description

Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, is controlled by G-proteins and plays an important role in regulating heartbeat. It associates with three other G-protein-activated potassium channels to form a heteromultimeric pore-forming complex that also couples to neurotransmitter receptors in the brain and whereby channel activation can inhibit action potential firing by hyperpolarizing the plasma membrane. These multimeric G-protein-gated inwardly-rectifying potassium (GIRK) channels may play a role in the pathophysiology of epilepsy, addiction, Down's syndrome, ataxia, and Parkinson's disease. Alternative splicing results in multiple transcript variants encoding distinct proteins.

Model STJ114329

Host Rabbit

Reactivity Human, Mouse, Rat

Applications WB

Immunogen A synthetic peptide corresponding to a sequence within amino acids 50-150 of

human KCNJ3 (NP_002230.1).

Gene ID 3760

Gene Symbol KCNJ3

Dilution range WB 1:500 - 1:2000

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name G protein-activated inward rectifier potassium channel 1 GIRK-1 Inward

rectifier K(+ channel Kir3.1 Potassium channel inwardly rectifying subfamily

J member 3

Molecular Weight 56.603 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:6264OMIM:601534Reactome:R-HSA-1296041

Alternative Names G protein-activated inward rectifier potassium channel 1 GIRK-1 Inward

rectifier K(+ channel Kir3.1 Potassium channel inwardly rectifying subfamily

J member 3

Function This potassium channel is controlled by G proteins, Inward rectifier potassium

channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it, Their voltage dependence is regulated by the

concentration of extracellular potassium

Cellular Localization Membrane

St John's Laboratory Ltd F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com