

Anti-KCNJ2 Antibody

Description Potassium channels are present in most mammalian cells, where they

participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Mutations in this gene have been associated with Andersen syndrome, which is characterized by periodic paralysis, cardiac arrhythmias, and dysmorphic features.

Model STJ114815

Host Rabbit

Reactivity Human, Mouse, Rat

Applications WB

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 318-427 of human KCNJ2 (NP_000882.1).

Gene ID 3759

Gene Symbol KCNJ2

Dilution range WB 1:500 - 1:2000

Tissue Specificity Heart, brain, placenta, lung, skeletal muscle, and kidney, Diffusely distributed

throughout the brain

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name Inward rectifier potassium channel 2 Cardiac inward rectifier potassium

channel Inward rectifier K(+ channel Kir2.1 IRK-1 hIRK1 Potassium channel

inwardly rectifying subfamily J member 2

Molecular Weight 48.288 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:62630MIM:170390Reactome:R-HSA-1296041

Alternative Names Inward rectifier potassium channel 2 Cardiac inward rectifier potassium

channel Inward rectifier K(+ channel Kir2.1 IRK-1 hIRK1 Potassium channel

inwardly rectifying subfamily J member 2

Function Probably participates in establishing action potential waveform and

excitability of neuronal and muscle tissues, Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it, Their voltage dependence is regulated by the

concentration of extracellular potassium

Cellular Localization Membrane

Post-translational

Modifications

S-nitrosylation increases the open probability and inward rectifying currents,

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com