

Anti-PRKAB2 Antibody

Description The protein encoded by this gene is a regulatory subunit of the AMP-

activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. This subunit may be a positive regulator of AMPK activity. It is highly expressed in skeletal muscle and thus may have tissue-specific roles. Multiple alternatively spliced transcript variants have been found for

Model STJ115304

Host Rabbit

Reactivity Human, Mouse, Rat

Applications IF, IHC, WB

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 1-272 of human PRKAB2 (NP_005390.1).

Gene ID <u>5565</u>

Gene Symbol PRKAB2

Dilution range WB 1:500 - 1:2000

IHC 1:50 - 1:200 IF 1:50 - 1:200

this gene.

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name 5'-AMP-activated protein kinase subunit beta-2 AMPK subunit beta-2

Molecular Weight 30.302 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:9379OMIM:602741Reactome:R-HSA-1445148

Alternative Names 5'-AMP-activated protein kinase subunit beta-2 AMPK subunit beta-2

Function Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy

sensor protein kinase that plays a key role in regulating cellular energy metabolism, In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming

processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation, AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators, Also acts as a regulator of cellular polarity by remodeling the actin

cytoskeleton

Post-translational Phosphorylated when associated with the catalytic subunit (PRKAA1 or

Modifications PRKAA2), Phosphorylated by ULK1 and ULK2

St John's Laboratory Ltd

F +44 (0)207 681 2580

T+44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com