

Anti-PIN1 Antibody

Description

Peptidyl-prolyl cis/trans isomerases (PPIases) catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds. This gene encodes one of the PPIases, which specifically binds to phosphorylated ser/thr-pro motifs to catalytically regulate the post-phosphorylation conformation of its substrates. The conformational regulation catalyzed by this PPIase has a profound impact on key proteins involved in the regulation of cell growth, genotoxic and other stress responses, the immune response, induction and maintenance of pluripotency, germ cell development, neuronal differentiation, and survival. This enzyme also plays a key role in the pathogenesis of Alzheimer's disease and many cancers. Multiple alternatively spliced transcript variants have been found for this gene.

Model STJ115621

Host Rabbit

Reactivity Human

Applications IF, WB

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 1-163 of human PIN1 (NP_006212.1).

Gene ID 5300

Gene Symbol PIN1

Dilution range WB 1:500 - 1:2000

IF 1:50 - 1:200

Tissue Specificity The phosphorylated form at Ser-71 is expressed in normal breast tissue cells

but not in breast cancer cells

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1

Molecular Weight 18.243 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:8988OMIM:601052Reactome:R-HSA-1169408

Alternative Names Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1

Function Peptidyl-prolyl cis/trans isomerase (PPIase) that binds to and isomerizes

specific phosphorylated Ser/Thr-Pro (pSer/Thr-Pro) motifs, By inducing conformational changes in a subset of phosphorylated proteins, acts as a

molecular switch in multiple cellular processes,

Cellular Localization Nucleus,

Post-translational Phosphorylation at Ser-71 by DAPK1 results in inhibition of its catalytic

activity, nuclear localization, and its ability to induce centrosome amplification, chromosome instability and cell transformation,

St John's Laboratory Ltd

Modifications

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com