

Anti-DOK5 Antibody

Description The protein encoded by this gene is a member of the DOK family of

membrane proteins, which are adapter proteins involved in signal transduction. The encoded protein interacts with phosphorylated receptor tyrosine kinases to mediate neurite outgrowth and activation of the MAP kinase pathway. Unlike other DOK family proteins, this protein does not interact with RASGAP. This protein is up-regulated in patients with systemic sclerosis and is associated with fibrosis induced by insulin-like growth factor binding protein 5. Alternative splicing of this gene results in multiple transcript variants.

Model STJ115679

Host Rabbit

Reactivity Mouse, Rat

Applications WB

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 237-306 of human DOK5 (NP_060901.2).

Gene ID <u>55816</u>

Gene Symbol DOK5

Dilution range WB 1:500 - 1:2000

Tissue Specificity Highest expression in skeletal muscle, lower in brain, heart and kidney, Also

detected in activated peripheral blood T-lymphocytes

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name Docking protein 5 Downstream of tyrosine kinase 5 Insulin receptor substrate

6 IRS-6 IRS6

Molecular Weight 35.464 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:16173OMIM:608334Reactome:R-HSA-8853659

Alternative Names Docking protein 5 Downstream of tyrosine kinase 5 Insulin receptor substrate

6 IRS-6 IRS6

Function DOK proteins are enzymatically inert adaptor or scaffolding proteins, They

provide a docking platform for the assembly of multimolecular signaling complexes, DOK5 functions in RET-mediated neurite outgrowth and plays a positive role in activation of the MAP kinase pathway, Putative link with

downstream effectors of RET in neuronal differentiation

Post-translational

Modifications

Phosphorylated on tyrosine residues in response to insulin, IGF1 and GDNF,

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com