
Anti-FN3K Antibody

Description

A high concentration of glucose can result in non-enzymatic oxidation of proteins by reaction of glucose and lysine residues (glycation). Proteins modified in this way, fructosamines, are less active or functional. This gene encodes an enzyme which catalyzes the phosphorylation of fructosamines which may result in deglycation.

Model STJ115680

Host Rabbit

Reactivity Human, Mouse

Applications WB

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 1-200 of human FN3K (NP_071441.1).

Gene ID <u>64122</u>

Gene Symbol FN3K

Dilution range WB 1:500 - 1:2000

Tissue Specificity Expressed in erythrocytes

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name Fructosamine-3-kinase

Molecular Weight 35.171 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:248220MIM:608425Reactome:R-HSA-163841

Alternative Names Fructosamine-3-kinase

Function May initiate a process leading to the deglycation of fructoselysine and of

glycated proteins, May play a role in the phosphorylation of 1-deoxy-1-morpholinofructose (DMF), fructoselysine, fructoseglycine, fructose and

glycated lysozyme

St John's Laboratory Ltd

F +44 (0)207 681 2580

T+44 (0)208 223 3081

 $\textbf{W} \ http://www.stjohnslabs.com/$

E info@stjohnslabs.com