

Anti-PKM Antibody

Description

This gene encodes a protein involved in glycolysis. The encoded protein is a pyruvate kinase that catalyzes the transfer of a phosphoryl group from phosphoenolpyruvate to ADP, generating ATP and pyruvate. This protein has been shown to interact with thyroid hormone and may mediate cellular metabolic effects induced by thyroid hormones. This protein has been found to bind Opa protein, a bacterial outer membrane protein involved in gonococcal adherence to and invasion of human cells, suggesting a role of this protein in bacterial pathogenesis. Several alternatively spliced transcript variants encoding a few distinct isoforms have been reported.

Model STJ115844

Host Rabbit

Reactivity Human, Mouse, Rat

Applications WB

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 11-221 of human PKM (NP_002645.3).

Gene ID <u>5315</u>

Gene Symbol PKM

Dilution range WB 1:500 - 1:2000

Tissue Specificity Specifically expressed in proliferating cells, such as embryonic stem cells,

embryonic carcinoma cells, as well as cancer cells

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name Pyruvate kinase PKM

Molecular Weight 57.937 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:90210MIM:179050Reactome:R-HSA-6798695

Alternative Names Pyruvate kinase PKM

Function Glycolytic enzyme that catalyzes the transfer of a phosphoryl group from

phosphoenolpyruvate (PEP) to ADP, generating ATP, Stimulates POU5F1-

mediated transcriptional activation, Plays a general role in caspase

independent cell death of tumor cells, The ratio between the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production, The transition between the 2 forms contributes to the control of

glycolysis and is important for tumor cell proliferation and survival,

Cellular Localization Cytoplasm, Nucleus,

Post-translational

Modifications

ISGylated,

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com