

Anti-PRKAA2 Antibody

Description The protein encoded by this gene is a catalytic subunit of the AMP-

activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. Studies of the mouse counterpart suggest that this catalytic subunit may control whole-body insulin sensitivity and is necessary for maintaining myocardial energy homeostasis during ischemia.

Model STJ115987

Host Rabbit

Reactivity Human, Mouse

Applications IF, WB

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 343-552 of human PRKAA2 (NP_006243.2).

Gene ID <u>5563</u>

Gene Symbol PRKAA2

Dilution range WB 1:500 - 1:2000

IF 1:50 - 1:200

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name 5'-AMP-activated protein kinase catalytic subunit alpha-2 AMPK subunit

alpha-2

Molecular Weight 62.32 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:9377OMIM:600497Reactome:R-HSA-1445148

Alternative Names 5'-AMP-activated protein kinase catalytic subunit alpha-2 AMPK subunit

alpha-2

Function Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor

protein kinase that plays a key role in regulating cellular energy metabolism, In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation, AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators, Also acts as a regulator of cellular polarity by remodeling the actin

Also acts as a regulator of cellular polarity by remodeling the actin

cytoskeleton

Cellular Localization Cytoplasm,

Post-translational Modifications Ubiquitinated,

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com