

Anti-PRKAG3 Antibody

Description The protein encoded by this gene is a regulatory subunit of the AMP-

activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. This subunit is one of the gamma regulatory subunits of AMPK. It is dominantly expressed in skeletal muscle. Studies of the pig counterpart suggest that this subunit may play a key role in the regulation of energy metabolism in skeletal muscle.

Model STJ116067

Host Rabbit

Reactivity Human

Applications IF

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 1-210 of human PRKAG3 (NP_059127.2).

Gene ID <u>53632</u>

Gene Symbol PRKAG3

Dilution range IF 1:50 - 1:100

Tissue Specificity Skeletal muscle, with weak expression in heart and pancreas

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name 5'-AMP-activated protein kinase subunit gamma-3 AMPK gamma3 AMPK

subunit gamma-3

Molecular Weight 54.258 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:9387OMIM:604976Reactome:R-HSA-1445148

Alternative Names 5'-AMP-activated protein kinase subunit gamma-3 AMPK gamma3 AMPK

subunit gamma-3

Function AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an

energy sensor protein kinase that plays a key role in regulating cellular energy metabolism, In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming

processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation, AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators, Also acts as a regulator of cellular polarity by remodeling the actin

cytoskeleton

Post-translational

Modifications

Phosphorylated by ULK1

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com