

Anti-REST Antibody

Description

This gene encodes a transcriptional repressor that represses neuronal genes in non-neuronal tissues. It is a member of the Kruppel-type zinc finger transcription factor family. It represses transcription by binding a DNA sequence element called the neuron-restrictive silencer element. The protein is also found in undifferentiated neuronal progenitor cells and it is thought that this repressor may act as a master negative regular of neurogenesis. Alternatively spliced transcript variants have been described

Model STJ116170

Host Rabbit

Reactivity Human

Applications IF

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 760-1060 of human REST (NP_001180437.1).

Gene ID <u>5978</u>

Gene Symbol REST

Dilution range IF 1:50 - 1:200

Tissue Specificity Ubiquitous, Expressed at higher levels in the tissues of the lymphocytic

compartment, including spleen, thymus, peripheral blood lymphocytes and

ovary

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name RE1-silencing transcription factor Neural-restrictive silencer factor X2 box

repressor

Molecular Weight 121.872 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:9966OMIM:600571Reactome:R-HSA-3214815

Alternative Names RE1-silencing transcription factor Neural-restrictive silencer factor X2 box

repressor

Function Transcriptional repressor which binds neuron-restrictive silencer element

(NRSE) and represses neuronal gene transcription in non-neuronal cells, Restricts the expression of neuronal genes by associating with two distinct corepressors, mSin3 and CoREST, which in turn recruit histone deacetylase to the promoters of REST-regulated genes, Mediates repression by recruiting the

BHC complex at RE1/NRSE sites which acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier, Transcriptional repression by REST-CDYL via the recruitment of histone methyltransferase EHMT2 may be important in transformation

suppression,

Cellular Localization Nucleus

St John's Laboratory Ltd

F +44 (0)207 681 2580

T+44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com