

Anti-Phospho-POLR2A-(S2) Antibody

Description This gene encodes the largest subunit of RNA polymerase II, the

polymerase responsible for synthesizing messenger RNA in eukaryotes. The product of this gene contains a carboxy terminal domain composed of heptapeptide repeats that are essential for polymerase activity. These repeats contain serine and threonine residues that are phosphorylated in actively transcribing RNA polymerase. In addition, this subunit, in combination with several other polymerase subunits, forms the DNA binding domain of the polymerase, a groove in which the DNA template is transcribed into RNA.

Model STJ116378

Host Rabbit

Reactivity Human

Applications WB

Immunogen A phospho specific peptide corresponding to residues surrounding S2 of

human POLR2A

Gene ID <u>5430</u>

Gene Symbol POLR2A

Dilution range WB 1:1000 - 1:2000

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name DNA-directed RNA polymerase II subunit RPB1 RNA polymerase II subunit

B1

Molecular Weight 217.176 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:9187OMIM:180660Reactome:R-HSA-112382

Alternative Names DNA-directed RNA polymerase II subunit RPB1 RNA polymerase II subunit

B1

Function DNA-dependent RNA polymerase catalyzes the transcription of DNA into

RNA using the four ribonucleoside triphosphates as substrates, Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs, Forms the polymerase active center together with the second largest subunit, Pol II is the central component of the basal RNA polymerase II transcription machinery, It is composed of mobile elements that move relative to each other, RPB1 is part of the core element with the central large cleft, the clamp element that moves to open and close the cleft and the jaws that are thought to grab the incoming DNA template, At the start of transcription, a single-stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol II, A bridging helix emanates from RPB1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol II by acting as a ratchet that moves the RNA-DNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition, During transcription elongation, Pol II moves on the template as the transcript elongates, Elongation is influenced by the phosphorylation status of the Cterminal domain (CTD) of Pol II largest subunit (RPB1), which serves as a platform for assembly of factors that regulate transcription initiation, elongation, termination and mRNA processing, Regulation of gene expression levels depends on the balance between methylation and acetylation levels of tha CTD-lysines, Initiation or early elongation steps of transcription of growth-factors-induced immediate early genes are regulated by the acetylation status of the CTD Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicate and transcriptase for the viral RNA circular genome,

Cellular Localization

Nucleus

Post-translational Modifications

The tandem heptapeptide repeats in the C-terminal domain (CTD) can be highly phosphorylated, The phosphorylation activates Pol II, Phosphorylation occurs mainly at residues 'Ser-2' and 'Ser-5' of the heptapeptide repeat and is mediated, at least, by CDK7 and CDK9, CDK7 phosphorylation of POLR2A associated with DNA promotes transcription initiation by triggering dissociation from DNA, Phosphorylation also takes place at 'Ser-7' of the heptapeptide repeat, which is required for efficient transcription of snRNA genes and processing of the transcripts, The phosphorylation state is believed to result from the balanced action of site-specific CTD kinases and phosphatases, and a 'CTD code' that specifies the position of Pol II within the transcription cycle has been proposed, Dephosphorylated by the protein

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

 $\begin{tabular}{ll} W & ttp://www.stjohnslabs.com/\\ & E & info@stjohnslabs.com \end{tabular}$