

Anti-CCNE1 Antibody

Description

The protein encoded by this gene belongs to the highly conserved cyclin family, whose members are characterized by a dramatic periodicity in protein abundance through the cell cycle. Cyclins function as regulators of CDK kinases. Different cyclins exhibit distinct expression and degradation patterns which contribute to the temporal coordination of each mitotic event. This cyclin forms a complex with and functions as a regulatory subunit of CDK2, whose activity is required for cell cycle G1/S transition. This protein accumulates at the G1-S phase boundary and is degraded as cells progress through S phase. Overexpression of this gene has been observed in many tumors, which results in chromosome instability, and thus may contribute to tumorigenesis. This protein was found to associate with, and be involved in, the phosphorylation of NPAT protein (nuclear protein mapped to the ATM locus), which participates in cell-cycle regulated histone gene expression and plays a critical role in promoting cell-cycle progression in the absence of pRB.

Model STJ116441

Host Rabbit

Reactivity Human, Mouse

Applications WB

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 300-410 of human CCNE1 (NP_001229.1).

Gene ID <u>898</u>

Gene Symbol CCNE1

Dilution range WB 1:500 - 1:2000

Tissue Specificity Highly expressed in testis and placenta, Low levels in bronchial epithelial

cells

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name G1/S-specific cyclin-E1

Molecular Weight 47.077 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:1589OMIM:123837Reactome:R-HSA-1538133

Alternative Names G1/S-specific cyclin-E1

Function Essential for the control of the cell cycle at the G1/S (start) transition,

Cellular Localization Nucleus

Post-translational

Modifications

Phosphorylation of both Thr-395 by GSK3 and Ser-399 by CDK2 creates a high affinity degron recognized by FBXW7, and accelerates degradation via the ubiquitin proteasome pathway, Phosphorylation at Thr-77 creates a low

affinity degron also recognized by FBXW7,

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com