

Anti-ASF1A Antibody

Description This gene encodes a member of the H3/H4 family of histone chaperone

proteins and is similar to the anti-silencing function-1 gene in yeast. The protein is a key component of a histone donor complex that functions in nucleosome assembly. It interacts with histones H3 and H4, and functions together with a chromatin assembly factor during DNA replication and

repair.

Model STJ116719

Host Rabbit

Reactivity Human, Mouse

Applications WB

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 77-204 of human ASF1A (NP_054753.1).

Gene ID 25842

Gene Symbol ASF1A

Dilution range WB 1:500 - 1:2000

Tissue Specificity Ubiquitously expressed

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name Histone chaperone ASF1A Anti-silencing function protein 1 homolog A

hAsf1 hAsf1a CCG1-interacting factor A CIA hCIA

Molecular Weight 22.969 kDa

Clonality Polyclonal

Unconjugated Conjugation

IgG Isotype

PBS with 0.02% sodium azide, 50% glycerol, pH7.3. **Formulation**

Store at -20C. Avoid freeze / thaw cycles. **Storage Instruction**

Database Links HGNC:20995OMIM:609189Reactome:R-HSA-2559584

Histone chaperone ASF1A Anti-silencing function protein 1 homolog A **Alternative Names**

hAsf1 hAsf1a CCG1-interacting factor A CIA hCIA

Function Histone chaperone that facilitates histone deposition and histone exchange and

> removal during nucleosome assembly and disassembly, Cooperates with chromatin assembly factor 1 (CAF-1) to promote replication-dependent chromatin assembly and with HIRA to promote replication-independent chromatin assembly, Required for the formation of senescence-associated heterochromatin foci (SAHF) and efficient senescence-associated cell cycle

exit,

Cellular Localization Nucleus

Phosphorylated by TLK1 and TLK2, Highly phosphorylated in S-phase and at Post-translational **Modifications**

lower levels in M-phase, TLK2-mediated phosphorylation at Ser-192 prevents

proteasome-dependent degradation,

St John's Laboratory Ltd

F +44 (0)207 681 2580

T+44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com