
Anti-PAN2 Antibody

Description

This gene encodes a deadenylase that functions as the catalytic subunit of the polyadenylate binding protein dependent poly(A) nuclease complex. The encoded protein is a magnesium dependent 3' to 5' exoribonuclease that is involved in the degradation of cytoplasmic mRNAs. Alternate splicing results in multiple transcript variants.

Model STJ117568

Host Rabbit

Reactivity Human, Mouse

Applications WB

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 700-1000 of human PAN2 (NP_001120932.1).

Gene ID 9924

Gene Symbol PAN2

Dilution range WB 1:200 - 1:2000

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name PAN2-PAN3 deadenylation complex catalytic subunit PAN2

Molecular Weight 135.368 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:20074OMIM:617447Reactome:R-HSA-429947

Alternative Names PAN2-PAN3 deadenylation complex catalytic subunit PAN2

Function Catalytic subunit of the poly(A)-nuclease (PAN) deadenylation complex, one

of two cytoplasmic mRNA deadenylases involved in general and miRNA-mediated mRNA turnover, PAN specifically shortens poly(A) tails of RNA and the activity is stimulated by poly(A)-binding protein (PABP), PAN deadenylation is followed by rapid degradation of the shortened mRNA tails by the CCR4-NOT complex, Deadenylated mRNAs are then degraded by two alternative mechanisms, namely exosome-mediated 3'-5' exonucleolytic degradation, or deadenlyation-dependent mRNA decaping and subsequent 5'-3' exonucleolytic degradation by XRN1, Also acts as an important regulator of the HIF1A-mediated hypoxic response, Required for HIF1A mRNA

stability independent of poly(A) tail length regulation,

Cellular Localization Cytoplasm

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com