

Anti-FN3KRP Antibody

Description A high concentration of glucose can result in non-enzymatic oxidation of

proteins by reaction of glucose and lysine residues (glycation). Proteins modified in this way are less active or functional. This gene encodes an enzyme which catalyzes the phosphorylation of psicosamines and ribulosamines compared to the neighboring gene which encodes a highly similar enzyme, fructosamine-3-kinase, which has different substrate specificity. The activity of both enzymes may result in deglycation of proteins to restore their function. Alternative splicing results in multiple transcript variants.

Model STJ117707

Host Rabbit

Reactivity Human, Mouse, Rat

Applications WB

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 1-309 of human FN3KRP (NP_078895.2).

Gene ID <u>79672</u>

Gene Symbol FN3KRP

Dilution range WB 1:200 - 1:2000

Tissue Specificity Expressed in erythrocytes

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name Ketosamine-3-kinase

Molecular Weight 34.412 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:257000MIM:611683Reactome:R-HSA-163841

Alternative Names Ketosamine-3-kinase

Function Phosphorylates psicosamines and ribulosamines, but not fructosamines, on the

third carbon of the sugar moiety, Protein-bound psicosamine 3-phosphates and ribulosamine 3-phosphates are unstable and decompose under physiological

conditions, Thus phosphorylation leads to deglycation,

St John's Laboratory Ltd

F +44 (0)207 681 2580 **T** +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com