

Anti-HIST1H3A Antibody

Description

Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. This structure consists of approximately 146 bp of DNA wrapped around a nucleosome, an octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H3 family. Transcripts from this gene lack polyA tails; instead, they contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6p22-p21.3.

Model STJ117852

Host Rabbit

Reactivity Human

Applications IF

Immunogen Recombinant fusion protein containing a sequence corresponding to amino

acids 1-136 of human HIST1H3A (NP_003520.1).

Gene ID <u>8350</u>

Gene Symbol HIST1H3A

Dilution range IF 1:50 - 1:200

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name Histone H3.1 Histone H3/a Histone H3/b Histone H3/c Histone H3/d Histone

H3/f Histone H3/h Histone H3/i Histone H3/j Histone H3/k Histone H3/l

Molecular Weight 15.404 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:4766OMIM:137800Reactome:R-HSA-1266695

Alternative Names Histone H3.1 Histone H3/a Histone H3/b Histone H3/c Histone H3/d Histone

H3/f Histone H3/h Histone H3/i Histone H3/j Histone H3/k Histone H3/l

Function Core component of nucleosome, Nucleosomes wrap and compact DNA into

chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template, Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability, DNA accessibility is regulated via a complex set of post-translational

modifications of histones, also called histone code, and nucleosome

remodeling

Cellular Localization Nucleus, Chromosome

Post-translational Acetylation is generally linked to gene activation, Acetylation on Lys-10

(H3K9ac) impairs methylation at Arg-9 (H3R8me2s), Acetylation on Lys-19 (H3K18ac) and Lys-24 (H3K24ac) favors methylation at Arg-18 (H3R17me), Acetylation at Lys-123 (H3K122ac) by EP300/p300 plays a central role in chromatin structure: localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability,

St John's Laboratory Ltd

Modifications

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com