

Anti-Phospho-RAF1-(S338) Antibody

Description This gene is the cellular homolog of viral raf gene (v-raf). The encoded

protein is a MAP kinase kinase kinase (MAP3K), which functions downstream of the Ras family of membrane associated GTPases to which it binds directly. Once activated, the cellular RAF1 protein can phosphorylate to activate the dual specificity protein kinases MEK1 and MEK2, which in turn phosphorylate to activate the serine/threonine specific protein kinases, ERK1 and ERK2. Activated ERKs are pleiotropic effectors of cell physiology and play an important role in the control of gene expression involved in the cell division cycle, apoptosis, cell differentiation and cell migration. Mutations in this gene are associated

with Noonan syndrome 5 and LEOPARD syndrome 2.

Model STJ117871

Host Rabbit

Reactivity Human, Mouse, Rat

Applications WB

Immunogen A phospho specific peptide corresponding to residues surrounding pS338 of

human RAF1

Gene ID 5894

Gene Symbol RAF1

Dilution range WB 1:500 - 1:2000

Tissue Specificity In skeletal muscle, isoform 1 is more abundant than isoform 2

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name RAF proto-oncogene serine/threonine-protein kinase

Molecular Weight 73.052 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:9829OMIM:164760Reactome:R-HSA-2672351

Alternative Names RAF proto-oncogene serine/threonine-protein kinase

Function

Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation, RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dualspecific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2), The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75', Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation, Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity, Phosphorylates TNNT2/cardiac muscle troponin T, Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1), Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death, Regulates Rho signaling and migration, and is required for normal wound healing, Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the upregulation of a transcriptional repressor SNAI2/SLUG, which induces downregulation of OCLN, Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation,

Cellular Localization

Cytoplasm, Cell membrane, Mitochondrion, Nucleus,

Post-translational Modifications Phosphorylation at Thr-269, Ser-338, Tyr-341, Thr-491 and Ser-494 results in its activation, Phosphorylation at Ser-29, Ser-43, Ser-289, Ser-296, Ser-301 and Ser-642 by MAPK1/ERK2 results in its inactivation, Phosphorylation at Ser-259 induces the interaction with YWHAZ and inactivates kinase activity, Dephosphorylation of Ser-259 by the complex containing protein phosphatase 1, SHOC2 and M-Ras/MRAS relieves inactivation, leading to stimulate RAF1 activity, Phosphorylation at Ser-338 by PAK1 and PAK5 and Ser-339 by PAK1 is required for its mitochondrial localization, Phosphorylation at Ser-621 in response to growth factor treatment stabilizes the protein, possibly by preventing proteasomal degradation, Phosphorylation at Ser-289, Ser-296, Ser-301, Ser-338 and Ser-621 are somehow linked to the methylation potential of cells, Treatment of cells with HGF in the presence of the methylation inhibitor 5'-methylthioadenosine (MTA) results in increased phosphorylation

at Ser-338 and Ser-621 and decreased phosphorylation at Ser-296, Ser-301 and Ser-338, Dephosphorylation at Ser-338 by PPP5C results in a activity decrease,

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081 E info@stjohnslabs.com

W http://www.stjohnslabs.com/