

Anti-Phospho-PRKCQ-(T538) Antibody

Description

Protein kinase C (PKC) is a family of serine- and threonine-specific protein kinases that can be activated by calcium and the second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC family members also serve as major receptors for phorbol esters, a class of tumor promoters. Each member of the PKC family has a specific expression profile and is believed to play a distinct role. The protein encoded by this gene is one of the PKC family members. It is a calcium-independent and phospholipid-dependent protein kinase. This kinase is important for T-cell activation. It is required for the activation of the transcription factors NF-kappaB and AP-1, and may link the T cell receptor (TCR) signaling complex to the activation of the transcription factors.

Model STJ117896

Host Rabbit

Reactivity Human

Applications WB

Immunogen A synthetic phosphorylated peptide around T538 of human PRKCQ

(NP_006248.1).

Gene ID 5588

Gene Symbol PRKCQ

Dilution range WB 1:500 - 1:2000

Tissue Specificity Expressed in skeletal muscle, T-cells, megakaryoblastic cells and platelets

Purification Affinity purification

Note For Research Use Only (RUO).

Protein Name Protein kinase C theta type

Molecular Weight 81.865 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Storage Instruction Store at -20C. Avoid freeze / thaw cycles.

Database Links HGNC:9410OMIM:600448Reactome:R-HSA-111465

Alternative Names Protein kinase C theta type

Function Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent

serine/threonine-protein kinase that mediates non-redundant functions in Tcell receptor (TCR) signaling, including T-cells activation, proliferation, differentiation and survival, by mediating activation of multiple transcription factors such as NF-kappa-B, JUN, NFATC1 and NFATC2, In TCR-CD3/CD28-co-stimulated T-cells, is required for the activation of NF-kappa-B and JUN, which in turn are essential for IL2 production, and participates in the calcium-dependent NFATC1 and NFATC2 transactivation, Mediates the activation of the canonical NF-kappa-B pathway (NFKB1) by direct phosphorylation of CARD11 on several serine residues, inducing CARD11 association with lipid rafts and recruitment of the BCL10-MALT1 complex, which then activates IKK complex, resulting in nuclear translocation and activation of NFKB1, May also play an indirect role in activation of the noncanonical NF-kappa-B (NFKB2) pathway, In the signaling pathway leading to JUN activation, acts by phosphorylating the mediator STK39/SPAK and may not act through MAP kinases signaling, Plays a critical role in TCR/CD28induced NFATC1 and NFATC2 transactivation by participating in the regulation of reduced inositol 1,4,5-trisphosphate generation and intracellular calcium mobilization, After costimulation of T-cells through CD28 can phosphorylate CBLB and is required for the ubiquitination and subsequent degradation of CBLB, which is a prerequisite for the activation of TCR, During T-cells differentiation, plays an important role in the development of T-helper 2 (Th2) cells following immune and inflammatory responses, and, in the development of inflammatory autoimmune diseases, is necessary for the activation of IL17-producing Th17 cells, May play a minor role in Th1 response, Upon TCR stimulation, mediates T-cell protective survival signal by phosphorylating BAD, thus protecting T-cells from BAD-induced apoptosis, and by up-regulating BCL-X(L)/BCL2L1 levels through NF-kappa-B and JUN pathways, In platelets, regulates signal transduction downstream of the ITGA2B, CD36/GP4, F2R/PAR1 and F2RL3/PAR4 receptors, playing a positive role in 'outside-in' signaling and granule secretion signal transduction, May relay signals from the activated ITGA2B receptor by regulating the uncoupling of WASP and WIPF1, thereby permitting the regulation of actin filament nucleation and branching activity of the Arp2/3 complex, May mediate inhibitory effects of free fatty acids on insulin signaling by phosphorylating IRS1, which in turn blocks IRS1 tyrosine phosphorylation

and downstream activation of the PI3K/AKT pathway, Phosphorylates MSN (moesin) in the presence of phosphatidylglycerol or phosphatidylinositol, Phosphorylates PDPK1 at 'Ser-504' and 'Ser-532' and negatively regulates its ability to phosphorylate PKB/AKT1,

Cellular Localization

Cytoplasm, Cell membrane

Post-translational **Modifications**

Autophosphorylation at Thr-219 is required for targeting to the TCR and cellular function of PRKCQ upon antigen receptor ligation, Following TCR

stimulation, phosphorylated at Tyr-90 and Ser-685,

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com