

Anti-RPS6 antibody

Description Goat polyclonal to RPS6. Ribosomal protein S6 is a component of the 40S

ribosomal subunit and is therefore involved in regulating translation ,Äì ribosome marker. Studies have also shown to be involved in cell proliferation, regulation of cell size and glucose homeostasis. It is the major substrate of protein kinases in the ribosome, with subsets of five C-terminal serine residues phosphorylated by different protein kinases.

Model STJ140049

Host Goat

Reactivity Avian, Bovine, Canine, Donkey, Feline, Goat, Guinea Pig, Hamster, Horse,

Human, Mouse, Other, Porcine, Rabbit, Rat, Sheep, Simian

Applications IF, WB

Immunogen Recombinant peptide derived from within residues 190 aa to the C-terminus of

human RPS6 produced in E. coli.

Immunogen Region C-Term

Gene ID 6194
Gene Symbol RPS6

Dilution range Western blot 1:500-1:2,000 Immunofluorescence 1:25-1:250

Immunohistochemistry (paraffin) ND Immunohistochemistry (frozen) ND

Purification This antibody is epitope-affinity purified from goat antiserum.

Note For research use only (RUO).

Protein Name 40S ribosomal protein S6 Phosphoprotein NP33 Small ribosomal subunit

protein eS6

Molecular Weight 29 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation PBS, 20% glycerol and 0.05% sodium azide.

Concentration 3 mg/mL

Storage Instruction Store at -20°, and avoid repeated freeze-thaw cycles.

Database Links HGNC:10429OMIM:180460

Alternative Names 40S ribosomal protein S6 Phosphoprotein NP33 Small ribosomal subunit

protein eS6

Function May play an important role in controlling cell growth and proliferation

through the selective translation of particular classes of mRNA.

Post-translational Ribosomal protein S6 is the major substrate of protein kinases in eukaryote

ribosomes. The phosphorylation is stimulated by growth factors, tumor promoting agents, and mitogens. It is dephosphorylated at growth arrest. Phosphorylated at Ser-235 and Ser-236 by RPS6KA1 and RPS6KA3; phosphorylation at these sites facilitates the assembly of the preinitiation

complex.

St John's Laboratory Ltd

Modifications

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com