

Anti-INSR antibody

4

Description Goat polyclonal antibody to insulin receptor. INSR is a receptor tyrosine

kinase. Preprotein is proteolytically processed to generate alpha and beta subunits that form a heterotetrameric receptor. The insulin signalling pathway, which regulates glucose uptake and release, as well as the synthesis and storage of carbohydrates, lipids and protein is activated by

the binding of insulin or other ligands to this receptor.

Model STJ140127

Host Goat

Reactivity Avian, Bovine, Canine, Donkey, Feline, Goat, Guinea Pig, Hamster, Horse,

Human, Mouse, Other, Porcine, Rabbit, Rat, Sheep, Simian

Applications WB

Immunogen Purified recombinant peptide within residues 1310 aa to the C-terminus of

human INSR produced in E. coli.

Immunogen Region C-Term

Gene ID 3643
Gene Symbol INSR

Dilution range Western blot 1:500-1:5,000 Immunofluorescence ND Immunohistochemistry

(paraffin) ND Immunohistochemistry (frozen) ND

Specificity Using liver, HeLa and Skov3 cell lysates detects a 180 kDa band by Western

blot.

Tissue Specificity Isoform Long and isoform Short are predominantly expressed in tissue targets

of insulin metabolic effects: liver, adipose tissue and skeletal muscle but are also expressed in the peripheral nerve, kidney, pulmonary alveoli, pancreatic

acini, placenta vascular endothelium, fibroblasts, monocytes, granulocytes, erythrocytes and skin. Isoform Short is preferentially expressed in fetal cells such as fetal fibroblasts, muscle, liver and kidney. Found as a hybrid receptor

with IGF1R in muscle, heart, kidney, adi

This antibody is epitope-affinity purified from goat antiserum. **Purification**

For research use only (RUO). Note

Insulin receptor (IR) (EC 2.7.10.1) (CD antigen CD220) [Cleaved into: Insulin **Protein Name**

receptor subunit alpha; Insulin receptor subunit betal

Molecular Weight 157 kDa

Clonality Polyclonal

Unconjugated Conjugation

IgG **Isotype**

PBS, 20% glycerol and 0.05% sodium azide. **Formulation**

3 mg/mLConcentration

Store at -20°, and avoid repeated freeze-thaw cycles. **Storage Instruction**

Database Links HGNC:6091OMIM:125853

Alternative Names Insulin receptor (IR) (EC 2.7.10.1) (CD antigen CD220) [Cleaved into: Insulin

receptor subunit alpha; Insulin receptor subunit beta]

Function Receptor tyrosine kinase which mediates the pleiotropic actions of insulin.

> Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosine

residues, including the p85 regulatory subunit of PI3K and SHP2.

Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway, which is responsible for most of the metabolic actions of insulin, and the Ras-MAPK pathway, which regulates expression of some genes and cooperates with the PI3K pathway to control cell growth and differentiation. Binding of the SH2 domains of PI3K to phosphotyrosines on IRS1 leads to the activation of PI3K and the generation of phosphatidylinositol-(3, 4, 5)-triphosphate (PIP3), a lipid second messenger, which activates several PIP3-dependent serine/threonine kinases, such as PDPK1 and subsequently AKT/PKB. The net effect of this pathway is

to produce a translocation of the glucose transporter SLC2A4/GLUT4 from cytoplasmic vesicles to the cell membrane to facilitate glucose transport. Moreover, upon insulin stimulation, activated AKT/PKB is responsible for: anti-apoptotic effect of insulin by inducing phosphorylation of BAD; regulates the expression of gluconeogenic and lipogenic enzymes by controlling the activity of the winged helix or forkhead (FOX) class of transcription factors. Another pathway regulated by PI3K-AKT/PKB activation is mTORC1 signaling pathway which regulates cell growth and metabolism and integrates

phosphorylating TSC2 thereby activating mTORC1 pathway. The Ras/RAF/MAP2K/MAPK pathway is mainly involved in mediating cell growth, survival and cellular differentiation of insulin. Phosphorylated IRS1

signals from insulin. AKT mediates insulin-stimulated protein synthesis by

recruits GRB2/SOS complex, which triggers the activation of the Ras/RAF/MAP2K/MAPK pathway. In addition to binding insulin, the insulin receptor can bind insulin-like growth factors (IGFI and IGFII). Isoform Short has a higher affinity for IGFII binding. When present in a hybrid receptor with IGF1R, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin.

Sequence and Domain Family

The tetrameric insulin receptor binds insulin via non-identical regions from two alpha chains, primarily via the C-terminal region of the first INSR alpha chain. Residues from the leucine-rich N-terminus of the other INSR alpha chain also contribute to this insulin binding site. A secondary insulin-binding site is formed by residues at the junction of fibronectin type-III domain 1 and 2.

Cellular Localization

Cell membrane. Single-pass type I membrane protein.

Post-translational Modifications

After being transported from the endoplasmic reticulum to the Golgi apparatus, the single glycosylated precursor is further glycosylated and then cleaved, followed by its transport to the plasma membrane. Autophosphorylated on tyrosine residues in response to insulin. Phosphorylation of Tyr-999 is required for binding to IRS1, SHC1 and STAT5B. Dephosphorylated by PTPRE at Tyr-999, Tyr-1185, Tyr-1189 and Tyr-1190. Dephosphorylated by PTPRF and PTPN1. Dephosphorylated by PTPN2; down-regulates insulin-induced signaling.

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com