

Anti-AVR2B antibody

Description Unconjugated Rabbit polyclonal to AVR2B

Model STJ190499

Host Rabbit

Reactivity Human, Mouse, Rat

Applications ELISA, WB

Immunogen Synthesized peptide derived from human AVR2B protein.

Immunogen Region 40-120aa

Gene ID <u>93</u>

Gene Symbol <u>ACVR2B</u>

Dilution range WB 1:500-2000 ELISA 1:5000-20000

Specificity AVR2B Polyclonal Antibody detects endogenous levels of protein.

Purification AVR2B antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name Activin receptor type-2B Activin receptor type IIB ACTR-IIB

Molecular Weight 56 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation Liquid form in PBS containing 50% glycerol, and 0.02% sodium azide.

Concentration 1 mg/ml

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links <u>HGNC:1740MIM:602730</u>

Alternative Names Activin receptor type-2B Activin receptor type IIB ACTR-IIB

Function

Transmembrane serine/threonine kinase activin type-2 receptor forming an activin receptor complex with activin type-1 serine/threonine kinase receptors (ACVR1, ACVR1B or ACVR1c). Transduces the activin signal from the cell surface to the cytoplasm and is thus regulating many physiological and pathological processes including neuronal differentiation and neuronal survival, hair follicle development and cycling, FSH production by the pituitary gland, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. Activin is also thought to have a paracrine or autocrine role in follicular development in the ovary. Within the receptor complex, the type-2 receptors act as a primary activin receptors (binds activin-A/INHBA, activin-B/INHBB as well as inhibin-A/INHA-INHBA). The type-1 receptors like ACVR1B act as downstream transducers of activin signals. Activin binds to type-2 receptor at the plasma membrane and activates its serine-threonine kinase. The activated receptor type-2 then phosphorylates and activates the type-1 receptor. Once activated, the type-1 receptor binds and phosphorylates the SMAD proteins SMAD2 and SMAD3, on serine residues of the C-terminal tail. Soon after their association with the activin receptor and subsequent phosphorylation, SMAD2 and SMAD3 are released into the cytoplasm where they interact with the common partner SMAD4. This SMAD complex translocates into the nucleus where it mediates activin-induced transcription. Inhibitory SMAD7, which is recruited to ACVR1B through FKBP1A, can prevent the association of SMAD2 and SMAD3 with the activin receptor complex, thereby blocking the activin signal. Activin signal transduction is also antagonized by the binding to the receptor of inhibin-B via the IGSF1 inhibin coreceptor.

Cellular Localization

Cell membrane

Post-translational Modifications Phosphorylated. Constitutive phosphorylation is in part catalyzed by its own kinase activity.

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com