

Anti-ATPO antibody

Description Unconjugated Rabbit polyclonal to ATPO

Model STJ190574

Host Rabbit

Reactivity Human, Mouse, Rat

Applications ELISA, WB

Immunogen Synthesized peptide derived from human ATPO protein.

Immunogen Region 1-80aa

Gene ID <u>539</u>

Gene Symbol ATP50

Dilution range WB 1:500-2000 ELISA 1:5000-20000

Specificity ATPO Polyclonal Antibody detects endogenous levels of protein.

Purification ATPO antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name ATP synthase subunit O, mitochondrial Oligomycin sensitivity conferral

protein OSCP

Molecular Weight 23 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation Liquid form in PBS containing 50% glycerol, and 0.02% sodium azide.

Concentration 1 mg/ml

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links <u>HGNC:8500MIM:600828</u>

Alternative Names ATP synthase subunit O, mitochondrial Oligomycin sensitivity conferral

protein OSCP

Function Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex

V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain and the peripheric stalk, which

acts as a stator to hold the catalytic alpha(3)beta(3) subcomplex and subunit

a/ATP6 static relative to the rotary elements.

Cellular Localization Mitochondrion Mitochondrion inner membrane

Post-translational

Modifications

Acetylation at Lys-162 decreases ATP production. Deacetylated by SIRT3.

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com