

Anti-MCP antibody

Description Unconjugated Rabbit polyclonal to MCP

Model STJ190956

Host Rabbit

Reactivity Human, Mouse, Rat

Applications ELISA, WB

Immunogen Synthesized peptide derived from human MCP protein.

Immunogen Region 10-90aa

Gene ID <u>4179</u>

Gene Symbol CD46

Dilution range WB 1:500-2000 ELISA 1:5000-20000

Specificity MCP Polyclonal Antibody detects endogenous levels of protein.

Tissue Specificity Expressed by all cells except erythrocytes.

Purification MCP antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name Membrane cofactor protein TLX Trophoblast leukocyte common antigen CD

antigen CD46

Molecular Weight 43 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation Liquid form in PBS containing 50% glycerol, and 0.02% sodium azide.

Concentration 1 mg/ml

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links <u>HGNC:6953OMIM:120920</u>

Alternative Names Membrane cofactor protein TLX Trophoblast leukocyte common antigen CD

antigen CD46

Function Acts as a cofactor for complement factor I, a serine protease which protects

autologous cells against complement-mediated injury by cleaving C3b and

C4b deposited on host tissue. May be involved in the fusion of the

spermatozoa with the oocyte during fertilization. Also acts as a costimulatory factor for T-cells which induces the differentiation of CD4+ into T-regulatory

1 cells. T-regulatory 1 cells suppress immune responses by secreting

interleukin-10, and therefore are thought to prevent autoimmunity. (Microbial infection) A number of viral and bacterial pathogens seem to bind MCP in order to exploit its immune regulation property and directly induce an immunosuppressive phenotype in T-cells. Acts as a receptor for adenovirus subgroup B2 and Ad3, cultured measles virus and herpesvirus 6. May act as a

receptor for pathogenic bacteria Neisseria and Streptococcus pyogenes .

Sequence and Domain Family Sushi domains 1 and 2 are required for interaction with human adenovirus B

PIV/FIBER protein and with Measles virus H protein. Sushi domains 2 and 3 are required for Herpesvirus 6 binding. Sushi domain 3 is required for Neisseria binding. Sushi domains 3 and 4 are required for interaction with Streptococcus pyogenes M protein and are the most important for interaction

with C3b and C4b.

Cellular Localization Cytoplasmic vesicle, secretory vesicle, acrosome inner membrane. Inner

acrosomal membrane of spermatozoa. Internalized upon binding of Measles virus, Herpesvirus 6 or Neisseria gonorrhoeae, which results in an increased susceptibility of infected cells to complement-mediated injury. In cancer cells

or cells infected by Neisseria, shedding leads to a soluble peptide.

Post-translational N-glycosylated on Asn-83; Asn-114 and Asn-273 in most tissues, but **Modifications** probably less N-glycosylated in testis. N-glycosylation on Asn-114 and

probably less N-glycosylated in testis. N-glycosylation on Asn-114 and Asn-273 is required for cytoprotective function. N-glycosylation on Asn-114 is required for Measles virus binding. N-glycosylation on Asn-273 is required for Neisseria binding. N-glycosylation is not required for human adenovirus

binding.; Extensively O-glycosylated in the Ser/Thr-rich domain. O-glycosylation is required for Neisseria binding but not for Measles virus or human adenovirus binding.; In epithelial cells, isoforms B/D/F/H/J/L/3 are phosphorylated by YES1 in response to infection by Neisseria gonorrhoeae; which promotes infectivity. In T-cells, these isoforms may be phosphorylated

by LCK.