

Anti-MYO10 antibody

Description Unconjugated Rabbit polyclonal to MYO10

Model STJ191014

Host Rabbit

Reactivity Human, Mouse, Rat

Applications ELISA, WB

Immunogen Synthesized peptide derived from human MYO10 protein.

Immunogen Region 680-760aa

Gene ID 4651

Gene Symbol MYO10

Dilution range WB 1:500-2000 ELISA 1:5000-20000

Specificity MYO10 Polyclonal Antibody detects endogenous levels of protein.

Tissue Specificity Ubiquitous.

Purification MYO10 antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name Unconventional myosin-X Unconventional myosin-10

Molecular Weight 226 kDa

Clonality Polyclonal

Conjugation Unconjugated

IgG Isotype

Formulation Liquid form in PBS containing 50% glycerol, and 0.02% sodium azide.

Concentration 1 mg/ml

Store at -20°C, and avoid repeat freeze-thaw cycles. **Storage Instruction**

Database Links HGNC:7593OMIM:601481

Unconventional myosin-X Unconventional myosin-10 **Alternative Names**

Myosins are actin-based motor molecules with ATPase activity. **Function**

> Unconventional myosins serve in intracellular movements. MYO10 binds to actin filaments and actin bundles and functions as plus end-directed motor.

The tail domain binds to membranous compartments containing

phosphatidylinositol 3,4,5-trisphosphate or integrins, and mediates cargo transport along actin filaments. Regulates cell shape, cell spreading and cell adhesion. Stimulates the formation and elongation of filopodia. May play a role in neurite outgrowth and axon guidance. In hippocampal neurons it induces the formation of dendritic filopodia by trafficking the actinremodeling protein VASP to the tips of filopodia, where it promotes actin elongation. Plays a role in formation of the podosome belt in osteoclasts. Isoform Headless: Functions as a dominant-negative regulator of isoform 1, suppressing its filopodia-inducing and axon outgrowth-promoting activities. In hippocampal neurons, it increases VASP retention in spine heads to induce spine formation and spine head expansion.

Sequence and Domain Family

Interaction between the motor domain and the tail leads to an inactive, monomeric conformation. Phospholipid binding via the PH domains leads to the formation of the active, dimeric form of the protein and strongly increases actin-dependent ATPase activity and motor activity. Interacts with membranes containing phosphatidylinositol-3,4,5-trisphosphate via the PH domains. IQ 3 domain mediates high-affinity calcium-dependent binding to CALM3/CLP.; The SAH (single alpha-helix) region is characterized by a high content of charged residues which are predicted to stabilize the alpha-helical structure by ionic bonds. It can refold after extension suggesting an in vivo force-dependent function. The isolated SAH domain is monomeric; however, in its distal part seems to form a semirigid helical structure which overlaps with a region shown to mediate antiparallel coiled coil-mediated dimerization.

Cellular Localization

Cytoplasm, cytosol Cell projection, lamellipodium Cell projection, ruffle Cytoplasm, cytoskeleton Cell projection, filopodium tip Cytoplasm, cell cortex Cell projection, filopodium membrane. May be in an inactive, monomeric conformation in the cytosol. Detected in cytoplasmic punctae and in cell projections. Colocalizes with actin fibers. Undergoes forward and rearward movements within filopodia. Interacts with microtubules.

Post-translational Modifications

The initiator methionine for isoform Headless is removed.