

Anti-KCNB2 antibody

Description Unconjugated Rabbit polyclonal to KCNB2

Model STJ191182

Host Rabbit

Reactivity Human, Mouse, Rat

Applications ELISA, WB

Immunogen Synthesized peptide derived from human KCNB2 protein.

Immunogen Region 170-250aa

Gene ID 9312

Gene Symbol KCNB2

Dilution range WB 1:500-2000 ELISA 1:5000-20000

Specificity KCNB2 Polyclonal Antibody detects endogenous levels of protein.

Purification KCNB2 antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name Potassium voltage-gated channel subfamily B member 2 Voltage-gated

potassium channel subunit Kv2.2

Molecular Weight 100 kDa

Clonality Polyclonal

Conjugation Unconjugated

IgG Isotype

Formulation Liquid form in PBS containing 50% glycerol, and 0.02% sodium azide.

Concentration 1 mg/ml

Store at -20°C, and avoid repeat freeze-thaw cycles. **Storage Instruction**

Database Links HGNC:62320MIM:607738

Potassium voltage-gated channel subfamily B member 2 Voltage-gated **Alternative Names**

potassium channel subunit Kv2.2

Function Voltage-gated potassium channel that mediates transmembrane potassium

> transport in excitable membranes, primarily in the brain and smooth muscle cells. Channels open or close in response to the voltage difference across the

membrane, letting potassium ions pass in accordance with their

electrochemical gradient. Homotetrameric channels mediate a delayedrectifier voltage-dependent outward potassium current that display rapid activation and slow inactivation in response to membrane depolarization. Can form functional homotetrameric and heterotetrameric channels that contain variable proportions of KCNB1; channel properties depend on the type of alpha subunits that are part of the channel. Can also form functional

heterotetrameric channels with other alpha subunits that are non-conducting when expressed alone, such as KCNS1 and KCNS2, creating a functionally diverse range of channel complexes. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Contributes to the delayed-rectifier voltage-gated potassium

current in cortical pyramidal neurons and smooth muscle cells.

Sequence and Domain Family The transmembrane segment S4 functions as voltage-sensor and is

> characterized by a series of positively charged amino acids at every third position. Channel opening and closing is effected by a conformation change that affects the position and orientation of the voltage-sensor paddle formed by S3 and S4 within the membrane. A transmembrane electric field that is positive inside would push the positively charged S4 segment outwards, thereby opening the pore, while a field that is negative inside would pull the S4 segment inwards and close the pore. Changes in the position and

orientation of S4 are then transmitted to the activation gate formed by the

inner helix bundle via the S4-S5 linker region.

Cellular Localization Cell membrane Perikaryon Cell projection, dendrite. Localized uniformly

throughout cell bodies and dendrites. Colocalizes with KCNB1 to high-

density somatodendritic clusters on cortical pyramidal neurons.

Post-translational **Modifications**

Phosphorylated.