

Anti-LPIN2 antibody

Description Unconjugated Rabbit polyclonal to LPIN2

Model STJ192442

Host Rabbit

Reactivity Human

Applications ELISA, WB

Immunogen Synthesized peptide derived from human LPIN2 protein.

Immunogen Region 220-300aa

Gene ID <u>9663</u>

Gene Symbol LPIN2

Dilution range WB 1:500-2000 ELISA 1:5000-20000

Specificity LPIN2 Polyclonal Antibody detects endogenous levels of protein.

Tissue Specificity Expressed in liver, lung, kidney, placenta, spleen, thymus, lymph node,

prostate, testes, small intestine, and colon.

Purification LPIN2 antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name Phosphatidate phosphatase LPIN2 Lipin-2

Molecular Weight 98 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation Liquid form in PBS containing 50% glycerol, and 0.02% sodium azide.

Concentration 1 mg/ml

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links <u>HGNC:144500MIM:605519</u>

Alternative Names Phosphatidate phosphatase LPIN2 Lipin-2

Function Plays important roles in controlling the metabolism of fatty acids at different

levels. Acts as a magnesium-dependent phosphatidate phosphatase enzyme which catalyzes the conversion of phosphatidic acid to diacylglycerol during triglyceride, phosphatidylcholine and phosphatidylethanolamine biosynthesis in the reticulum endoplasmic membrane. Acts also as a nuclear transcriptional

coactivator for PPARGC1A to modulate lipid metabolism .

Sequence and Domain Family Contains 1 Asp-Xaa-Asp-Xaa-Thr (DXDXT) motif, a catalytic motif known

to be essential for phosphatidate phosphatase activity. Contains one Leu-Xaa-Xaa-Ile-Leu (LXXIL) motif, a motif known to be a transcriptional binding

motif.

Cellular Localization Nucleus Cytoplasm, cytosol Endoplasmic reticulum membrane. Translocates

to endoplasmic reticulum membrane with increasing levels of oleate.

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com