

Anti-Phospho-Kv3.4 (S15) antibody

Description Rabbit polyclonal to Phospho-Kv3.4 (S15).

Model STJ91317

Host Rabbit

Reactivity Human, Mouse

Applications ELISA, IF, IHC

Immunogen Synthesized peptide derived from human Kv3.4 around the phosphorylation

site of S15.

Immunogen Region 1-80 aa

Gene ID <u>3749</u>

Gene Symbol KCNC4

Dilution range IHC 1:100-1:300IF 1:200-1:1000ELISA 1:5000

Specificity Phospho-Kv3.4 (S15) Polyclonal Antibody detects endogenous levels of

Kv3.4 protein only when phosphorylated at S15.

Purification The antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name Potassium voltage-gated channel subfamily C member 4 KSHIIIC Voltage-

gated potassium channel subunit Kv3.4

Molecular Weight 70 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

Concentration 1 mg/ml

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links <u>HGNC:6236OMIM:176265</u>

Alternative Names Potassium voltage-gated channel subfamily C member 4 KSHIIIC Voltage-

gated potassium channel subunit Kv3.4

Function This protein mediates the voltage-dependent potassium ion permeability of

excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with

their electrochemical gradient.

Sequence and Domain Family The segment S4 is probably the voltage-sensor and is characterized by a series

of positively charged amino acids at every third position.; The tail may be important in modulation of channel activity and/or targeting of the channel to

specific subcellular compartments.

Cellular Localization Membrane. Multi-pass membrane protein.

Post-translational Phosphorylation of serine residues in the inactivation gate inhibits rapid

Modifications channel closure.

St John's Laboratory Ltd

F +44 (0)207 681 2580 **T** +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com