

Anti-A Cyclase V/VI antibody

Description Rabbit polyclonal to A Cyclase V/VI.

Model STJ91397

Host Rabbit

Reactivity Human, Mouse, Rat

Applications ELISA, IF, IHC, WB

Immunogen Synthesized peptide derived from human A Cyclase V/VI

Immunogen Region 900-980 aa, C-terminal

Gene ID <u>111</u>

Gene Symbol ADCY5

Dilution range WB 1:500-1:2000IHC 1:100-1:300IF 1:200-1:1000ELISA 1:10000

Specificity A Cyclase V/VI Polyclonal Antibody detects endogenous levels of A Cyclase

V/VI protein.

Tissue Specificity Detected in pancreas islets (at protein level). Detected in pancreas islets.

Purification The antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name Adenylate cyclase type 5 ATP pyrophosphate-lyase 5 Adenylate cyclase type

V Adenylyl cyclase 5 AC5

Molecular Weight 138 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

Concentration 1 mg/ml

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links <u>HGNC:2360MIM:600293</u>

Alternative Names Adenylate cyclase type 5 ATP pyrophosphate-lyase 5 Adenylate cyclase type

V Adenylyl cyclase 5 AC5

Function Catalyzes the formation of the signaling molecule cAMP in response to G-

protein signaling . Mediates signaling downstream of ADRB1 . Regulates the increase of free cytosolic Ca(2+) in response to increased blood glucose levels and contributes to the regulation of Ca(2+)-dependent insulin secretion .

Sequence and Domain Family The protein contains two modules with six transmembrane helices each; both

are required for catalytic activity. Isolated N-terminal or C-terminal guanylate cyclase domains have no catalytic activity, but when they are brought together, enzyme activity is restored. The active site is at the interface of the two domains. Both contribute substrate-binding residues, but the catalytic metal ions are bound exclusively via the N-terminal guanylate cyclase

domain.

Cellular Localization Cell membrane

Post-translational Pl

Modifications

Phosphorylated by RAF1.

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com