


## Anti-Actin alpha antibody



**Description** Rabbit polyclonal to Actin alpha1.

Model STJ91462

**Host** Rabbit

**Reactivity** Human, Mouse, Rat

**Applications** ELISA, IHC, WB

Immunogen Synthesized peptide derived from human Actin alpha1

Immunogen Region 1-80 aa, N-terminal

**Gene ID** <u>58</u>

Gene Symbol ACTA1

**Dilution range** WB 1:500-1:2000IHC 1:100-1:300ELISA 1:20000

**Specificity** Actin alpha1 Polyclonal Antibody detects endogenous levels of Actin alpha1

protein.

**Purification** The antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

**Note** For Research Use Only (RUO).

**Protein Name** Actin, alpha skeletal muscle Alpha-actin-1

Molecular Weight 45 kDa

**Clonality** Polyclonal

**Conjugation** Unconjugated

**Isotype** IgG

**Formulation** Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

**Concentration** 1 mg/ml

**Storage Instruction** Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links <u>HGNC:1290MIM:102610</u>

Alternative Names Actin, alpha skeletal muscle Alpha-actin-1

**Function** Actins are highly conserved proteins that are involved in various types of cell

motility and are ubiquitously expressed in all eukaryotic cells.

**Cellular Localization** Cytoplasm, cytoskeleton.

**Post-translational** Oxidation of Met-46 and Met-49 by MICALs (MICAL1, MICAL2 or Modifications MICAL3) to form methionine sulfoxide promotes actin filament

depolymerization. MICAL1 and MICAL2 produce the (R)-S-oxide form. The (R)-S-oxide form is reverted by MSRB1 and MSRB2, which promote actin repolymerization . Monomethylation at Lys-86 (K84me1) regulates actin-myosin interaction and actomyosin-dependent processes. Demethylation by ALKBH4 is required for maintaining actomyosin dynamics supporting normal cleavage furrow ingression during cytokinesis and cell migration. (Microbial infection) Monomeric actin is cross-linked by V.cholerae toxins RtxA and VgrG1 in case of infection: bacterial toxins mediate the cross-link between Lys-52 of one monomer and Glu-272 of another actin monomer, resulting in formation of highly toxic actin oligomers that cause cell rounding . The toxin can be highly efficient at very low concentrations by acting on formin homology family proteins: toxic actin oligomers bind with high affinity to formins and adversely affect both nucleation and elongation abilities of formins, causing their potent inhibition in both profilin-dependent and independent manners .

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com