


## **Anti-Atm antibody**



**Description** Rabbit polyclonal to Atm.

Model STJ91762

**Host** Rabbit

**Reactivity** Human, Mouse

**Applications** ELISA, IHC

**Immunogen** Synthesized peptide derived from human Atm around the non-

phosphorylation site of S1981.

**Immunogen Region** 1920-2000 aa

**Gene ID** <u>472</u>

Gene Symbol <u>ATM</u>

**Dilution range** IHC 1:100-1:300ELISA 1:40000

**Specificity** Atm Polyclonal Antibody detects endogenous levels of Atm protein.

**Tissue Specificity** Found in pancreas, kidney, skeletal muscle, liver, lung, placenta, brain, heart,

spleen, thymus, testis, ovary, small intestine, colon and leukocytes.

**Purification** The antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

**Note** For Research Use Only (RUO).

Protein Name Serine-protein kinase ATM Ataxia telangiectasia mutated A-T mutated

Molecular Weight 350.644 kDa

**Clonality** Polyclonal

**Conjugation** Unconjugated

**Isotype** IgG

**Formulation** Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

**Concentration** 1 mg/ml

**Storage Instruction** Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links <u>HGNC:7950MIM:208900</u>

Alternative Names Serine-protein kinase ATM Ataxia telangiectasia mutated A-T mutated

**Function** Serine/threonine protein kinase which activates checkpoint signaling upon

double strand breaks (DSBs), apoptosis and genotoxic stresses such as ionizing ultraviolet A light (UVA), thereby acting as a DNA damage sensor. Recognizes the substrate consensus sequence [ST]-Q. Phosphorylates 'Ser-139' of histone variant H2AX/H2AFX at double strand breaks (DSBs), thereby regulating DNA damage response mechanism. Also plays a role in pre-B cell allelic exclusion, a process leading to expression of a single immunoglobulin heavy chain allele to enforce clonality and monospecific recognition by the B-cell antigen receptor (BCR) expressed on individual Blymphocytes. After the introduction of DNA breaks by the RAG complex on one immunoglobulin allele, acts by mediating a repositioning of the second allele to pericentromeric heterochromatin, preventing accessibility to the RAG complex and recombination of the second allele. Also involved in signal transduction and cell cycle control. May function as a tumor suppressor. Necessary for activation of ABL1 and SAPK. Phosphorylates DYRK2, CHEK2, p53/TP53, FANCD2, NFKBIA, BRCA1, CTIP, nibrin (NBN), TERF1, RAD9 and DCLRE1C. May play a role in vesicle and/or protein transport. Could play a role in T-cell development, gonad and neurological function. Plays a role in replication-dependent histone mRNA degradation. Binds DNA ends. Phosphorylation of DYRK2 in nucleus in response to genotoxic stress prevents its MDM2-mediated ubiquitination and subsequent

in DNA damage response.

**Sequence and Domain Family** The FATC domain is required for interaction with KAT5.

Cellular Localization Nucleus Cytoplasmic vesicle. Primarily nuclear. Found also in endocytic

vesicles in association with beta-adaptin.

**Post-translational** Phosphorylated by NUAK1/ARK5. Autophosphorylation on Ser-367, **Modifications** Ser-1893, Ser-1981 correlates with DNA damage-mediated activation

Ser-1893, Ser-1981 correlates with DNA damage-mediated activation of the kinase. Acetylation, on DNA damage, is required for activation of the kinase activity, dimer-monomer transition, and subsequent autophosphorylation on

proteasome degradation. Phosphorylates ATF2 which stimulates its function

Ser-1981. Acetylated in vitro by KAT5/TIP60.