

Anti-Bek antibody

Description	Rabbit polyclonal to Bek.

Model STJ91850

Host Rabbit

Reactivity Human, Mouse, Rat

Applications ELISA, IF, IHC, WB

Immunogen Synthesized peptide derived from human Bek

Immunogen Region 440-520 aa, Internal

Gene ID 2263

Gene Symbol FGFR2

Dilution range WB 1:500-1:2000IHC 1:100-1:300IF 1:200-1:1000ELISA 1:10000

Specificity Bek Polyclonal Antibody detects endogenous levels of Bek protein.

Purification The antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name Fibroblast growth factor receptor 2 FGFR-2 K-sam KGFR Keratinocyte

growth factor receptor CD antigen CD332

Molecular Weight 92 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

Concentration 1 mg/ml

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links <u>HGNC:3689OMIM:101200</u>

Alternative Names Fibroblast growth factor receptor 2 FGFR-2 K-sam KGFR Keratinocyte

growth factor receptor CD antigen CD332

Function Tyrosine-protein kinase that acts as cell-surface receptor for fibroblast growth

factors and plays an essential role in the regulation of cell proliferation, differentiation, migration and apoptosis, and in the regulation of embryonic development. Required for normal embryonic patterning, trophoblast function,

limb bud development, lung morphogenesis, osteogenesis and skin development. Plays an essential role in the regulation of osteoblast

differentiation, proliferation and apoptosis, and is required for normal skeleton

development. Promotes cell proliferation in keratinocytes and immature osteoblasts, but promotes apoptosis in differentiated osteoblasts.

Phosphorylates PLCG1, FRS2 and PAK4. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the

AKT1 signaling pathway. FGFR2 signaling is down-regulated by ubiquitination, internalization and degradation. Mutations that lead to constitutive kinase activation or impair normal FGFR2 maturation, internalization and degradation lead to aberrant signaling. Over-expressed

FGFR2 promotes activation of STAT1.

Sequence and Domain Family The second and third Ig-like domains directly interact with fibroblast growth

factors (FGF) and heparan sulfate proteoglycans. Alternative splicing events

affecting the third Ig-like domain are crucial for ligand selectivity.

Cellular Localization Cell membrane. Single-pass type I membrane protein. Golgi apparatus.

Cytoplasmic vesicle. Detected on osteoblast plasma membrane lipid rafts. After ligand binding, the activated receptor is rapidly internalized and degraded.. Isoform 1: Cell membrane. Single-pass type I membrane protein. After ligand binding, the activated receptor is rapidly internalized and degraded.. Isoform 3: Cell membrane. Single-pass type I membrane protein. After ligand binding, the activated receptor is rapidly internalized and

degraded.. Isoform 14: Secreted.. Isoform 19: Secreted.

Post-translational Modifications

Autophosphorylated. Binding of FGF family members together with heparan sulfate proteoglycan or heparin promotes receptor dimerization and

autophosphorylation on several tyrosine residues. Autophosphorylation occurs

in trans between the two FGFR molecules present in the dimer.

Phosphorylation at Tyr-769 is essential for interaction with PLCG1. N-glycosylated in the endoplasmic reticulum. The N-glycan chains undergo further maturation to an Endo H-resistant form in the Golgi apparatus. Ubiquitinated. FGFR2 is rapidly ubiquitinated after autophosphorylation, leading to internalization and degradation. Subject to degradation both in lysosomes and by the proteasome.

St John's Laboratory Ltd

F +44 (0)207 681 2580 **T** +44 (0)208 223 3081

W http://www.stjohnslabs.com/
E info@stjohnslabs.com