

Anti-Brk antibody

Description Rabbit polyclonal to Brk.

Model STJ91890

Host Rabbit

Reactivity Human

Applications ELISA, IF

Immunogen Synthesized peptide derived from human Brk around the non-phosphorylation

site of Y447.

Immunogen Region 390-470 aa

Gene ID <u>5753</u>

Gene Symbol PTK6

Dilution range IF 1:200-1:1000ELISA 1:20000

Specificity Brk Polyclonal Antibody detects endogenous levels of Brk protein.

Tissue Specificity Epithelia-specific. Very high level in colon and high levels in small intestine

and prostate, and low levels in some fetal tissues. Not expressed in breast or ovarian tissue but expressed in high percentage of breast and ovarian cancers. Also overexpressed in some metastatic melanomas, lymphomas, colon cancers, squamous cell carcinomas and prostate cancers. Also found in melanocytes. Not expressed in heart, brain, placenta, lung, liver, skeletal

muscle, kidney and pancreas. Isoform 2 is present in prostate

Purification The antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name Protein-tyrosine kinase 6 Breast tumor kinase Tyrosine-protein kinase BRK

Molecular Weight 50 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

Concentration 1 mg/ml

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links <u>HGNC:9617OMIM:602004</u>

Alternative Names Protein-tyrosine kinase 6 Breast tumor kinase Tyrosine-protein kinase BRK

Function Non-receptor tyrosine-protein kinase implicated in the regulation of a variety

tyrosine-phosphorylated proteins.

of signaling pathways that control the differentiation and maintenance of normal epithelia, as well as tumor growth. Function seems to be context dependent and differ depending on cell type, as well as its intracellular localization. A number of potential nuclear and cytoplasmic substrates have been identified. These include the RNA-binding proteins: KHDRBS1/SAM68, KHDRBS2/SLM1, KHDRBS3/SLM2 and SFPQ/PSF; transcription factors:

STAT3 and STAT5A/B and a variety of signaling molecules:

ARHGAP35/p190RhoGAP, PXN/paxillin, BTK/ATK, STAP2/BKS.

Associates also with a variety of proteins that are likely upstream of PTK6 in various signaling pathways, or for which PTK6 may play an adapter-like role. These proteins include ADAM15, EGFR, ERBB2, ERBB3 and IRS4. In normal or non-tumorigenic tissues, PTK6 promotes cellular differentiation and apoptosis. In tumors PTK6 contributes to cancer progression by sensitizing cells to mitogenic signals and enhancing proliferation, anchorage-independent survival and migration/invasion. Association with EGFR, ERBB2, ERBB3 may contribute to mammary tumor development and growth through enhancement of EGF-induced signaling via BTK/AKT and PI3 kinase. Contributes to migration and proliferation by contributing to EGF-mediated phosphorylation of ARHGAP35/p190RhoGAP, which promotes association with RASA1/p120RasGAP, inactivating RhoA while activating RAS. EGF stimulation resulted in phosphorylation of PNX/Paxillin by PTK6 and activation of RAC1 via CRK/CrKII, thereby promoting migration and invasion. PTK6 activates STAT3 and STAT5B to promote proliferation. Nuclear PTK6 may be important for regulating growth in normal epithelia, while cytoplasmic PTK6 might activate oncogenic signaling pathways.; Isoform 2 inhibits PTK6 phosphorylation and PTK6 association with other

Sequence and Domain Family

The SH3 domain plays a major role in substrate interactions. The SH2 domain of PTK6 plays a role in protein-protein interactions, but is likely more important for the regulation of catalytic activity.

Cellular Localization

Cytoplasm. Nucleus. Cell projection, ruffle. Membrane. Colocalizes with KHDRBS1, KHDRBS2 or KHDRBS3, within the nucleus. Nuclear localization in epithelial cells of normal prostate but cytoplasmic localization in cancer prostate.

Post-translational Modifications

Autophosphorylated. Autophosphorylation of Tyr-342 leads to an increase of kinase activity. Tyr-447 binds to the SH2 domain when phosphorylated and negatively regulates kinase activity.

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com