

Anti-CENP-A antibody

Description	Rabbit polyclonal to CENP-A.	

Model STJ92218

Host Rabbit

Reactivity Human

Applications ELISA, IF, IHC

Immunogen Synthesized peptide derived from human CENP-A around the non-

phosphorylation site of S7.

Immunogen Region 1-80 aa

Gene ID <u>1058</u>

Gene Symbol CENPA

Dilution range IHC 1:100-1:300IF 1:200-1:1000ELISA 1:10000

Specificity CENP-A Polyclonal Antibody detects endogenous levels of CENP-A protein.

Purification The antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name Histone H3-like centromeric protein A Centromere autoantigen A Centromere

protein A CENP-A

Molecular Weight 15.991 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

Concentration 1 mg/ml

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links <u>HGNC:1851OMIM:117139</u>

Alternative Names Histone H3-like centromeric protein A Centromere autoantigen A Centromere

protein A CENP-A

Function Histone H3-like nucleosomal protein that is specifically found in centromeric

nucleosomes. Replaces conventional H3 in the nucleosome core of

centromeric chromatin at the inner plate of the kinetochore . The presence of CENPA subtly modifies the nucleosome structure and the way DNA is wrapped around the nucleosome and gives rise to protruding DNA ends that are less well-ordered and rigid compared to nucleosomes containing histone H3 . May serve as an epigenetic mark that propagates centromere identity through replication and cell division . Required for recruitment and assembly of kinetochore proteins, and as a consequence required for progress through

mitosis, chromosome segregation and cytokinesis.

Sequence and Domain Family The CATD (CENPA targeting domain) region is responsible for the more

compact structure of nucleosomes containing CENPA. It is necessary and

sufficient to mediate the localization into centromeres.

Cellular Localization Nucleus Chromosome, centromere, kinetochore Chromosome, centromere.

Localizes exclusively in the kinetochore domain of centromeres. Occupies a compact domain at the inner kinetochore plate stretching across 2 thirds of the length of the constriction but encompassing only one third of the constriction width and height . Phosphorylation at Ser-68 during early mitosis abolishes association with chromatin and centromeres and results in dispersed nuclear

location.

Post-translational Ubiquitinated (Probable). Interaction with herpes virus HSV-1 ICP0 protein, **Modifications** leads to its degradation by the proteasome pathway. Trimethylated by NTMT

leads to its degradation by the proteasome pathway. Trimethylated by NTMT1 at the N-terminal glycine after cleavage of Met-1. Methylation is low before incorporation into nucleosomes and increases with cell cycle progression, with the highest levels in mitotic nucleosomes. Phosphorylated by CDK1 at Ser-68

during early mitosis; this abolishes association with chromatin and

centromeres, prevents interaction with HJURP and thereby prevents premature

assembly of CENPA into centromeres . Dephosphorylated at Ser-68 by PPP1CA during late mitosis . Phosphorylation of Ser-7 by AURKA and

AURKB during prophase is required for localization of AURKA and AURKB

at inner centromere and is essential for normal cytokinesis . Initial

phosphorylation during prophase is mediated by AURKA and is maintained

by AURKB. Poly-ADP-ribosylated by PARP1.