

Anti-c-Rel antibody

Description

Rabbit polyclonal to c-Rel.

Model STJ92470

Host Rabbit

Reactivity Human

Applications ELISA, IHC, WB

Immunogen Synthesized peptide derived from human c-Rel around the non-

phosphorylation site of S503.

Immunogen Region 440-520 aa

Gene ID 5966

Gene Symbol REL

Dilution range WB 1:500-1:2000IHC 1:100-1:300ELISA 1:20000

Specificity c-Rel Polyclonal Antibody detects endogenous levels of c-Rel protein.

Purification The antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name Proto-oncogene c-Rel

Molecular Weight 68 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

Concentration 1 mg/ml

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links <u>HGNC:9954OMIM:164910</u>

Alternative Names Proto-oncogene c-Rel

Function Proto-oncogene that may play a role in differentiation and lymphopoiesis. NF-

kappa-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NFkappa-B is a homo- or heterodimeric complex formed by the Rel-like domaincontaining proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of posttranslational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NFkappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, Ikappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NFkappa-B complex which translocates to the nucleus. The NF-kappa-B heterodimer RELA/p65-c-Rel is a transcriptional activator.

Cellular Localization Nucleus

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/

E info@stjohnslabs.com