

Anti-DGK-theta antibody

Description Rabbit polyclonal to DGK-theta.

Model STJ92702

Host Rabbit

Reactivity Human

Applications ELISA, IHC, WB

Immunogen Synthesized peptide derived from human DGK-theta

Immunogen Region 660-740 aa, C-terminal

Gene ID <u>1609</u>

Gene Symbol DGKQ

Dilution range WB 1:500-1:2000IHC 1:100-1:300ELISA 1:10000

Specificity DGK-theta Polyclonal Antibody detects endogenous levels of DGK-theta

protein.

Purification The antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name Diacylglycerol kinase theta DAG kinase theta Diglyceride kinase theta DGK-

theta

Molecular Weight 101 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

Concentration 1 mg/ml

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links <u>HGNC:2856OMIM:601207</u>

Alternative Names Diacylglycerol kinase theta DAG kinase theta Diglyceride kinase theta DGK-

theta

Function Phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA).

May regulate the activity of protein kinase C by controlling the balance between these two signaling lipids. Activated in the nucleus in response to alpha-thrombin and nerve growth factor . May be involved in cAMP-induced activation of NR5A1 and subsequent steroidogenic gene transcription by delivering PA as ligand for NR5A1. Acts synergistically with NR5A1 on

CYP17 transcriptional activity.

Sequence and Domain Family The L-X-X-L-L repeats are implicated in binding to the nuclear receptor

NR5A1.

Cellular Localization Cytoplasm Cell membrane Cytoplasm, cytoskeleton Nucleus Nucleus speckle.

Translocates to the nucleus in response to thrombin stimulation . Translocates to the plasma membrane in response to steroid hormone receptor stimulation . Translocation to the plasma membrane is dependent on G-protein coupled receptor stimulation and subsequent activation of PRKCE and probably

PRKCH.

Post-translational

Modifications

Phosphorylated by PRKCE and PRKCH in vitro.

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com