
Anti-MARK2 antibody

Description Rabbit polyclonal to MARK2.

Model STJ94016

Host Rabbit

Reactivity Human, Mouse, Rat, Simian

Applications ELISA, IF, WB

Immunogen Synthesized peptide derived from human MARK2

Immunogen Region 10-90 aa, N-terminal

Gene ID <u>2011</u>

Gene Symbol MARK2

Dilution range WB 1:500-1:2000IF 1:200-1:1000ELISA 1:20000

Specificity MARK2 Polyclonal Antibody detects endogenous levels of MARK2 protein.

Tissue Specificity High levels of expression in heart, brain, skeletal muscle and pancreas, lower

levels observed in lung, liver and kidney.

Purification The antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name Serine/threonine-protein kinase MARK2 ELKL motif kinase 1 EMK-1

MAP/microtubule affinity-regulating kinase 2 PAR1 homolog PAR1 homolog

b Par-1b Par1b

Molecular Weight 85 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

Concentration 1 mg/ml

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links <u>HGNC:3332OMIM:600526</u>

Alternative Names Serine/threonine-protein kinase MARK2 ELKL motif kinase 1 EMK-1

MAP/microtubule affinity-regulating kinase 2 PAR1 homolog PAR1 homolog

b Par-1b Par1b

Function Serine/threonine-protein kinase involved in cell polarity and microtubule

dynamics regulation. Phosphorylates CRTC2/TORC2, DCX, HDAC7, KIF13B, MAP2, MAP4, MAPT/TAU, and RAB11FIP2. Plays a key role in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Regulates epithelial cell polarity by

microtubules, and their disassembly. Regulates epithelial cell polarity by phosphorylating RAB11FIP2. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Regulates axogenesis by phosphorylating KIF13B, promoting interaction between KIF13B and 14-3-3 and inhibiting microtubule-dependent accumulation of KIF13B. Also required for neurite outgrowth and

establishment of neuronal polarity. Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). Modulates the developmental decision to build a columnar versus a hepatic epithelial cell apparently by promoting a switch from a direct to a transcytotic mode of apical protein delivery. Essential for the asymmetric

development of membrane domains of polarized epithelial cells.

Sequence and Domain Family The UBA domain does not seem to bind ubiquitin and ubiquitin-like and

might play a role in regulating the enzyme conformation and localization. Activation of the kinase activity following phosphorylation at Thr-208 is accompanied by a conformational change that alters the orientation of the UBA domain with respect to the catalytic domain. The KA1 domain mediates

binding to phospholipids and targeting to membranes.

Cellular Localization Cell membrane. Peripheral membrane protein. Cytoplasm. Lateral cell

membrane. Cytoplasm, cytoskeleton. Phosphorylation at Thr-596 by PRKCZ/aPKC and subsequent interaction with 14-3-3 protein YWHAZ

promotes relocation from the cell membrane to the cytoplasm.

Post-translational Autophosphorylated. Phosphorylated at Thr-208 by STK11/LKB1 in complex **Modifications** with STE20-related adapter-alpha (STRADA) pseudo kinase and CAB39.

with STE20-related adapter-alpha (STRADA) pseudo kinase and CAB39. Phosphorylation at Thr-208 by TAOK1 activates the kinase activity, leading to phosphorylation and detachment of MAPT/TAU from microtubules. Phosphorylation at Ser-212 by GSK3-beta (GSK3B) inhibits the kinase activity. Phosphorylation by CaMK1 promotes activity and is required to

promote neurite outgrowth. Phosphorylation at Thr-596 by PRKCZ/aPKC in polarized epithelial cells inhibits the kinase activity and promotes binding to 14-3-3 protein YWHAZ, leading to relocation from cell membrane to cytoplasm.

St John's Laboratory Ltd

 \mathbf{F} +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com