

Anti-RyR-2 antibody

Description Rabbit polyclonal to RyR-2.

Model STJ95561

Host Rabbit

Reactivity Human, Mouse, Rat

Applications ELISA, IF, IHC

Immunogen Synthesized peptide derived from human RyR-2 around the non-

phosphorylation site of S2808.

Immunogen Region 2750-2830 aa

Gene ID <u>6262</u>

Gene Symbol RYR2

Dilution range IHC 1:100-1:300IF 1:200-1:1000ELISA 1:5000

Specificity RyR-2 Polyclonal Antibody detects endogenous levels of RyR-2 protein.

Tissue Specificity Detected in heart muscle (at protein level). Heart muscle, brain (cerebellum

and hippocampus) and placenta.

Purification The antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name Ryanodine receptor 2 RYR-2 RyR2 hRYR-2 Cardiac muscle ryanodine

receptor Cardiac muscle ryanodine receptor-calcium release channel Type 2

ryanodine receptor

Molecular Weight 564.498 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

Concentration 1 mg/ml

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links HGNC:104840MIM:180902

Alternative Names Ryanodine receptor 2 RYR-2 RyR2 hRYR-2 Cardiac muscle ryanodine

receptor Cardiac muscle ryanodine receptor-calcium release channel Type 2

ryanodine receptor

Function Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic

reticulum into the cytoplasm and thereby plays a key role in triggering cardiac

muscle contraction. Aberrant channel activation can lead to cardiac

arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) levels due to activation of the L-type calcium channel CACNA1C. The calcium channel activity is modulated by formation of heterotetramers with RYR3. Required for cellular calcium ion homeostasis. Required for

embryonic heart development.

Sequence and Domain Family The calcium release channel activity resides in the C-terminal region while the

remaining part of the protein resides in the cytoplasm.

Cellular Localization Sarcoplasmic reticulum membrane Membrane Sarcoplasmic reticulum. The

number of predicted transmembrane domains varies between orthologs, but

both N-terminus and C-terminus seem to be cytoplasmic.

Post-translational Channel activity is modulated by phosphorylation. Phosphorylation at

Modifications Ser-2808 and Ser-2814 increases the open probability of the calcium channel.

Phosphorylation is increased in failing heart, leading to calcium leaks and increased cytoplasmic Ca(2+) levels. Phosphorylation at Ser-2031 by PKA

enhances the response to lumenal calcium.

St John's Laboratory Ltd

F +44 (0)207 681 2580

T +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com