

Anti-Tau antibody

Description

Tau is a protein encoded by the MAPT gene which is approximately 78,9 kDa. Tau is localised to the cytoplasm and cell membrane. It is involved in the apoptotic cleavage of cellular proteins, MAPK signalling pathway, CDK-mediated phosphorylation and removal of Cdc6 and development slit-robo signalling. It promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity. The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein. Tau is expressed in neurons. Mutations in the MAPT gene may result in Frontotemporal dementia. STJ95911 was affinity-purified from rabbit antiserum by affinity-chromatography using epitopespecific immunogen. This polyclonal antibody detects endogenous levels of Tau protein.

Model STJ95911

Host Rabbit

Reactivity Human, Mouse, Rat

Applications ELISA, IF, IHC, WB

Immunogen Synthesized peptide derived from human Tau around the non-phosphorylation

site of T212.

Immunogen Region 470-550 aa

Gene ID <u>4137</u>

Gene Symbol MAPT

Dilution range WB 1:500-1:2000IHC 1:100-1:300IF 1:200-1:1000ELISA 1:20000

Specificity Tau Polyclonal Antibody detects endogenous levels of Tau protein.

Tissue Specificity Expressed in neurons. Isoform PNS-tau is expressed in the peripheral nervous

system while the others are expressed in the central nervous system.

Purification The antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name Microtubule-associated protein tau Neurofibrillary tangle protein Paired

helical filament-tau PHF-tau

Molecular Weight 79 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

Concentration 1 mg/ml

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links HGNC:6893OMIM:157140

Alternative Names Microtubule-associated protein tau Neurofibrillary tangle protein Paired

helical filament-tau PHF-tau

Function Promotes microtubule assembly and stability, and might be involved in the

establishment and maintenance of neuronal polarity. The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both. Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may

preferentially play a role in its stabilization.

Sequence and Domain Family The tau/MAP repeat binds to tubulin. Type I isoforms contain 3 repeats while

type II isoforms contain 4 repeats.

Cellular Localization Cytoplasm, cytosol Cell membrane Cytoplasm, cytoskeleton Cell projection,

axon. Mostly found in the axons of neurons, in the cytosol and in association

with plasma membrane components.

Post-translational Phosphorylation at serine and threonine residues in S-P or T-P motifs by

Modifications proline-directed protein kinases (PDPK1: CDK1, CDK5, GSK3, MAPK)

(only 2-3 sites per protein in interphase, seven-fold increase in mitosis, and in the form associated with paired helical filaments (PHF-tau)), and at serine residues in K-X-G-S motifs by MAP/microtubule affinity-regulating kinase (MARK1 or MARK2), causing detachment from microtubules, and their disassembly. Phosphorylation decreases with age. Phosphorylation within tau/MAP's repeat domain or in flanking regions seems to reduce tau/MAP's interaction with, respectively, microtubules or plasma membrane components. Phosphorylation on Ser-610, Ser-622, Ser-641 and Ser-673 in several isoforms during mitosis. Phosphorylation at Ser-548 by GSK3B reduces ability to bind

and stabilize microtubules. Phosphorylation at Ser-579 by BRSK1 and

BRSK2 in neurons affects ability to bind microtubules and plays a role in neuron polarization. Phosphorylated at Ser-554, Ser-579, Ser-602, Ser-606 and Ser-669 by PHK. Phosphorylation at Ser-214 by SGK1 mediates microtubule depolymerization and neurite formation in hippocampal neurons. There is a reciprocal down-regulation of phosphorylation and O-GlcNAcylation. Phosphorylation on Ser-717 completely abolishes the O-GlcNAcylation on this site, while phosphorylation on Ser-713 and Ser-721 reduces glycosylation by a factor of 2 and 4 respectively. Phosphorylation on Ser-721 is reduced by about 41.5% by GlcNAcylation on Ser-717. Dephosphorylated at several serine and threonine residues by the serine/threonine phosphatase PPP5C. Polyubiquitinated. Requires functional TRAF6 and may provoke SQSTM1-dependent degradation by the proteasome . PHF-tau can be modified by three different forms of polyubiquitination. 'Lys-48'-linked polyubiquitination is the major form, 'Lys-6'-linked and 'Lys-11'-linked polyubiquitination also occur. O-glycosylated. O-GlcNAcylation content is around 8.2%. There is reciprocal down-regulation of phosphorylation and O-GlcNAcylation. Phosphorylation on Ser-717 completely abolishes the O-GlcNAcylation on this site, while phosphorylation on Ser-713 and Ser-721 reduces O-GlcNAcylation by a factor of 2 and 4 respectively. O-GlcNAcylation on Ser-717 decreases the phosphorylation on Ser-721 by about 41.5%. Glycation of PHF-tau, but not normal brain TAU/MAPT. Glycation is a non-enzymatic post-translational modification that involves a covalent linkage between a sugar and an amino group of a protein molecule forming ketoamine. Subsequent oxidation, fragmentation and/or cross-linking of ketoamine leads to the production of advanced glycation endproducts (AGES). Glycation may play a role in stabilizing PHF aggregation leading to tangle formation in AD.

St John's Laboratory Ltd

F +44 (0)207 681 2580 **T** +44 (0)208 223 3081

W http://www.stjohnslabs.com/ E info@stjohnslabs.com