

Anti-TDG antibody

Description Rabbit polyclonal to TDG.

Model STJ95958

Host Rabbit

Reactivity Human, Mouse, Rat

Applications ELISA, IF, IHC, WB

Immunogen Synthesized peptide derived from human TDG

Immunogen Region 1-80 aa, Internal

Gene ID <u>6996</u>

Gene Symbol TDG

Dilution range WB 1:500-1:2000IHC 1:100-1:300IF 1:200-1:1000ELISA 1:5000

Specificity TDG Polyclonal Antibody detects endogenous levels of TDG protein.

Purification The antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Note For Research Use Only (RUO).

Protein Name G/T mismatch-specific thymine DNA glycosylase Thymine-DNA glycosylase

hTDG

Molecular Weight 46 kDa

Clonality Polyclonal

Conjugation Unconjugated

Isotype IgG

Formulation Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

Concentration 1 mg/ml

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links <u>HGNC:11700OMIM:601423</u>

Alternative Names G/T mismatch-specific thymine DNA glycosylase Thymine-DNA glycosylase

hTDG

Function DNA glycosylase that plays a key role in active DNA demethylation:

specifically recognizes and binds 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) in the context of CpG sites and mediates their excision through base-excision repair (BER) to install an unmethylated cytosine. Cannot remove 5-hydroxymethylcytosine (5hmC). According to an alternative model, involved in DNA demethylation by mediating DNA glycolase activity toward 5-hydroxymethyluracil (5hmU) produced by deamination of 5hmC. Also involved in DNA repair by acting as a thymine-DNA glycosylase that mediates correction of G/T mispairs to G/C pairs: in the DNA of higher eukaryotes, hydrolytic deamination of 5-methylcytosine to

thymine leads to the formation of G/T mismatches. Its role in the repair of canonical base damage is however minor compared to its role in DNA demethylation. It is capable of hydrolyzing the carbon-nitrogen bond between the sugar-phosphate backbone of the DNA and a mispaired thymine. In addition to the G/T, it can remove thymine also from C/T and T/T mispairs in the order G/T \gg C/T \gg T/T. It has no detectable activity on apyrimidinic sites and does not catalyze the removal of thymine from A/T pairs or from single-stranded DNA. It can also remove uracil and 5-bromouracil from mispairs

with guanine.

Cellular Localization Nucleus

Post-translational Modifications

Sumoylation on Lys-330 by either SUMO1 or SUMO2 induces dissociation of

the product DNA.

St John's Laboratory Ltd

F +44 (0)207 681 2580

W http://www.stjohnslabs.com/ E info@stjohnslabs.com

T +44 (0)208 223 3081