

Anti-eIF4A1 antibody

Western Blot (WB) analysis of 1. 293T 2. HELA 3. HepG2 4. Mouse Brain 5. Rat Brain cells using elF4A1 Monoclonal Antibody. (STJ97038)

Description

eIF4A1 is a protein encoded by the EIF4A1 gene which is approximately 46,1 kDa. eIF4A1 is localised to the cytoplasm and cell membrane. It is involved in viral mRNA translation, deadenylation-dependent mRNA decay, regulation of lipid metabolism and insulin signalling-generic cascades. It is an ATP-dependent RNA helicase that is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. eIF4A1 is expressed in the liver, lung, nervous system, pancreas and skin. STJ97038 was developed from clone M8 and was affinity-purified from mouse ascites by affinity-chromatography using specific immunogen. The antibody detects endogenous eIF4A1 protein.

Model STJ97038

Host Mouse

Reactivity Human, Mouse, Rat

Applications IF, WB

Immunogen Synthetic Peptide

Gene ID 1973

Gene Symbol <u>EIF4A1</u>

Dilution range WB 1:1000-3000IF 1:100-200

Specificity The antibody detects endogenous eIF4A1 protein.

Purification The antibody was affinity-purified from mouse ascites by affinity-

chromatography using specific immunogen.

Clone ID M8

Note For Research Use Only (RUO).

Eukaryotic initiation factor 4A-I eIF-4A-I eIF4A-I ATP-dependent RNA **Protein Name**

helicase eIF4A-1

Clonality Monoclonal

Unconjugated Conjugation

Isotype IgG1

Formulation Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links HGNC:3282OMIM:602641

Alternative Names Eukaryotic initiation factor 4A-I eIF-4A-I eIF4A-I ATP-dependent RNA

helicase eIF4A-1

Function ATP-dependent RNA helicase which is a subunit of the eIF4F complex

> involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5'-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the

initiator codon.

St John's Laboratory Ltd

F +44 (0)207 681 2580

W http://www.stjohnslabs.com/ T+44 (0)208 223 3081 E info@stjohnslabs.com