

Anti-Ataxin-1 antibody

Description Mouse monoclonal to Ataxin-1.

Model STJ97853

Host Mouse

Reactivity Human

Applications ELISA, FC, IF, IHC, WB

Immunogen Purified recombinant fragment of human Ataxin-1 expressed in E. Coli.

Gene ID <u>6310</u>

Gene Symbol ATXN1

Dilution range WB 1:500-1:2000IHC 1:200-1:1000IF 1:200-1:1000FC 1:200-1:400ELISA

1:10000

Specificity Ataxin-1 Monoclonal Antibody detects endogenous levels of Ataxin-1 protein.

Tissue Specificity Widely expressed throughout the body.

Purification Affinity purification

Clone ID 2F5

Note For Research Use Only (RUO).

Protein Name Ataxin-1 Spinocerebellar ataxia type 1 protein

Clonality Monoclonal

Conjugation Unconjugated

Isotype IgG1

Formulation Ascitic fluid containing 0.03% sodium azide.

Storage Instruction Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links HGNC:105480MIM:164400

Alternative Names Ataxin-1 Spinocerebellar ataxia type 1 protein

Function Chromatin-binding factor that repress Notch signaling in the absence of Notch

intracellular domain by acting as a CBF1 corepressor. Binds to the HEY promoter and might assist, along with NCOR2, RBPJ-mediated repression.

Binds RNA in vitro. May be involved in RNA metabolism.

Sequence and Domain Family The AXH domain is required for interaction with CIC.

Cellular Localization Cytoplasm Nucleus. Colocalizes with USP7 in the nucleus.

Post-translational Modifications Ubiquitinated by UBE3A, leading to its degradation by the proteasome. The presence of expanded poly-Gln repeats in spinocerebellar ataxia 1 (SCA1) patients impairs ubiquitination and degradation, leading to accumulation of ATXN1 in neurons and subsequent toxicity. Phosphorylation at Ser-775 increases the pathogenicity of proteins with an expanded polyglutamine tract. Sumoylation is dependent on nuclear localization and phosphorylation at Ser-775. It is reduced in the presence of an expanded polyglutamine tract.

St John's Laboratory Ltd

F +44 (0)207 681 2580

W http://www.stjohnslabs.com/ E info@stjohnslabs.com

T +44 (0)208 223 3081