

Anti-Emt antibody

Description Mouse monoclonal to Emt.

Model STJ98020

Host Mouse

Reactivity Human

Applications ELISA, FC, IF, WB

Immunogen Purified recombinant fragment of human Emt expressed in E. Coli.

Gene ID <u>3702</u>

Gene Symbol <u>ITK</u>

Dilution range WB 1:500-1:2000IF 1:200-1:1000FC 1:200-1:400ELISA 1:10000

Specificity Emt Monoclonal Antibody detects endogenous levels of Emt protein.

Tissue Specificity T-cell lines and natural killer cell lines.

Purification Affinity purification

Clone ID 5G6

Note For Research Use Only (RUO).

Protein Name Tyrosine-protein kinase ITK/TSK Interleukin-2-inducible T-cell kinase IL-2-

inducible T-cell kinase Kinase EMT T-cell-specific kinase Tyrosine-protein

kinase Lyk

Clonality Monoclonal

Conjugation Unconjugated

IgG1 **Isotype**

Formulation Ascitic fluid containing 0.03% sodium azide.

Store at -20°C, and avoid repeat freeze-thaw cycles. **Storage Instruction**

HGNC:61710MIM:186973 **Database Links**

Tyrosine-protein kinase ITK/TSK Interleukin-2-inducible T-cell kinase IL-2-**Alternative Names**

inducible T-cell kinase Kinase EMT T-cell-specific kinase Tyrosine-protein

kinase Lyk

Function Tyrosine kinase that plays an essential role in regulation of the adaptive

immune response. Regulates the development, function and differentiation of

conventional T-cells and nonconventional NKT-cells. When antigen presenting cells (APC) activate T-cell receptor (TCR), a series of

phosphorylation lead to the recruitment of ITK to the cell membrane, in the vicinity of the stimulated TCR receptor, where it is phosphorylated by LCK. Phosphorylation leads to ITK autophosphorylation and full activation. Once activated, phosphorylates PLCG1, leading to the activation of this lipase and subsequent cleavage of its substrates. In turn, the endoplasmic reticulum releases calcium in the cytoplasm and the nuclear activator of activated T-cells

(NFAT) translocates into the nucleus to perform its transcriptional duty. Phosphorylates 2 essential adapter proteins: the linker for activation of Tcells/LAT protein and LCP2. Then, a large number of signaling molecules such as VAV1 are recruited and ultimately lead to lymphokine production, T-

cell proliferation and differentiation.

Sequence and Domain Family The N-terminal PH domain allows ITK to be recruited to the plasma

> membrane by an activated PI3 kinase. This domain contains also a prolinerich region (PRR). The adjoining domain is a SH3 domain, which binds to PRR (from itself or from other proteins). Next, a SH2 domain is required for binding tyrosine-phosphorylated substrates. In the C-terminal region, the

kinase domain is required for tyrosine phosphorylation.

Cellular Localization Cytoplasm. Localizes in the vicinity of cell surface receptors in the plasma

membrane after receptor stimulation.

Phosphorylated at Tyr-512 in the activation loop of the kinase domain by Post-translational **Modifications**

LCK. Subsequent autophosphorylation at Tyr-180 leads to the kinase

activation. The autophosphorylated Tyr-180 lies within the substrate binding

sequence of the SH3 domain. Ubiquitinated.