


## Anti-IK beta antibody



Description

4

Mouse monoclonal to IKKbeta.

Model STJ98165

**Host** Mouse

**Reactivity** Human

**Applications** ELISA, IHC, WB

**Immunogen** Purified recombinant fragment of IKKbeta expressed in E. Coli.

**Gene ID** <u>3551</u>

Gene Symbol <u>IKBKB</u>

**Dilution range** WB 1:500-1:2000IHC 1:200-1:1000ELISA 1:10000

**Specificity** IKKbeta Monoclonal Antibody detects endogenous levels of IKKbeta protein.

**Tissue Specificity** Highly expressed in heart, placenta, skeletal muscle, kidney, pancreas, spleen,

thymus, prostate, testis and peripheral blood.

**Purification** Affinity purification

Clone ID 10A2C5B3

**Note** For Research Use Only (RUO).

Protein Name Inhibitor of nuclear factor kappa-B kinase subunit beta I-kappa-B-kinase beta

IKK-B IKK-beta IkBKB I-kappa-B kinase 2 IKK2 Nuclear factor NF-kappa-

B inhibitor kinase beta NFKBIKB

**Clonality** Monoclonal

**Conjugation** Unconjugated

Isotype IgG1

**Formulation** Ascitic fluid containing 0.03% sodium azide.

**Storage Instruction** Store at -20°C, and avoid repeat freeze-thaw cycles.

Database Links <u>HGNC:5960OMIM:603258</u>

Alternative Names Inhibitor of nuclear factor kappa-B kinase subunit beta I-kappa-B-kinase beta

IKK-B IKK-beta IkBKB I-kappa-B kinase 2 IKK2 Nuclear factor NF-kappa-

B inhibitor kinase beta NFKBIKB

**Function** Serine kinase that plays an essential role in the NF-kappa-B signaling pathway

which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses. Acts as part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation and phosphorylates inhibitors of NF-kappa-B on 2 critical serine residues. These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome. In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis. In addition to the NF-kappa-B inhibitors, phosphorylates several other components of the signaling pathway including NEMO/IKBKG, NFkappa-B subunits RELA and NFKB1, as well as IKK-related kinases TBK1 and IKBKE. IKK-related kinase phosphorylations may prevent the overproduction of inflammatory mediators since they exert a negative regulation on canonical IKKs. Phosphorylates FOXO3, mediating the TNFdependent inactivation of this pro-apoptotic transcription factor. Also phosphorylates other substrates including NCOA3, BCL10 and IRS1. Within the nucleus, acts as an adapter protein for NFKBIA degradation in UVinduced NF-kappa-B activation.

**Sequence and Domain Family** 

The kinase domain is located in the N-terminal region. The leucine zipper is important to allow homo- and hetero-dimerization. At the C-terminal region is

located the region responsible for the interaction with NEMO/IKBKG.

Upon cytokine stimulation, phosphorylated on Ser-177 and Ser-181 by

Cellular Localization Cytoplasm Nucleus Membrane raft. Colocalized with DPP4 in membrane

rafts.

Post-translational Modifications

MEKK1 and/or MAP3K14/NIK as well as TBK1 and PRKCZ; which enhances activity. Once activated, autophosphorylates on the C-terminal serine cluster; which decreases activity and prevents prolonged activation of the inflammatory response. Phosphorylated by the IKK-related kinases TBK1 and IKBKE, which is associated with reduced CHUK/IKKA and IKBKB activity and NF-kappa-B-dependent gene transcription. Dephosphorylated at Ser-177 and Ser-181 by PPM1A and PPM1B. (Microbial infection) Acetylation of Thr-180 by Yersinia yopJ prevents phosphorylation and activation, thus blocking the I-kappa-B pathway. Ubiquitinated. Monoubiquitination involves TRIM21 that leads to inhibition of Tax-induced NF-kappa-B signaling. According to PubMed:19675099, 'Ser-163' does not serve as a monoubiquitination site. According to PubMed:16267042,

serve as a monoubiquitination site. According to PubMed:16267042, ubiquitination on 'Ser-163' modulates phosphorylation on C-terminal serine residues. (Microbial infection) Monoubiquitination by TRIM21 is disrupted by Yersinia yopJ. Hydroxylated by PHD1/EGLN2, loss of hydroxylation

under hypoxic conditions results in activation of NF-kappa-B.

St John's Laboratory Ltd

**F** +44 (0)207 681 2580 **T** +44 (0)208 223 3081

W http://www.stjohnslabs.com/
E info@stjohnslabs.com