# Data Sheet (Cat.No.T1104)



## Paromomycin Sulfate

### **Chemical Properties**

CAS No.: 1263-89-4

Formula: C23H47N5O18S

Molecular Weight: 713.71

Appearance: no data available

Storage: Powder: -20°C for 3 years | In solvent: -80°C for 1 year

## **Biological Description**

| Description   | Paromomycin binds specifically to the RNA oligonucleotide at the A site of bacterial 305 ribosomes, thereby causing misreading and premature termination of translation of mRNA and inhibition of protein synthesis followed by cell death. Paromomycin Sulfate (Aminosidine sulfate) is the sulfate salt form of paromomycin, a structural derivative of neomycin, an aminoglycoside antibiotic with amebicidal and bactericidal effects again predominantly aerobic gram-negative bacteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Targets(IC50) | Antibacterial, Antibiotic, Parasite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| In vitro      | In both clinical cases and experimental models of cutaneous leishmaniasis (CL), lesions caused by L. major show a faster and more complete recovery when treated with paromomycin ointment as compared to those caused by L. panamensis and L. amazonensis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| In vivo       | Paromomycin, an aminoglycoside antibiotic, exhibits robust antimicrobial activity against a broad spectrum of Gram-positive bacteria, Gram-negative bacteria, some protozoa, and tapeworms. In vitro analysis of amastigote sensitivity within a mouse macrophage model indicated that L. tropica and the L. major strains (ED50s: $1 \sim 5 \mu M$ ) are more sensitive to Paromomycin than L. mexicana (ED50: $39 \mu M$ ) and L. braziliensis (ED50: $12 \mu M$ ). The L. donovani strain demonstrates moderate sensitivity (ED50: $6 \sim 18 \mu M$ ), with the exception of the Indian strain, DD8, exhibiting significantly reduced susceptibility (ED50 >150 $\mu M$ ).                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Kinase Assay  | Concentration-response and kinetic studies: The microsomal protein (30 $\mu$ g), [1 $\beta$ -3H] androstenedione (6.6 × 105 dpm) and NADPH (270 $\mu$ M) are used for the concentration-response experiment with an incubation time of 20 minutes. The Aminoglutethimide is initially tested at 10 $\mu$ M and 100 $\mu$ M concentrations, followed by a full concentration-response study with at least 8 concentrations ranging from 0.01 $\mu$ M to 160 $\mu$ M. For the initial velocity study the concentration of [1 $\beta$ -3H]androstenedione is varied from 7.5 to 100 nM and the incubation time is set to 5 minutes. The tritiated water formed during the conversion of the tritiated substrate, [1 $\beta$ -3H]androstenedione, to estrone is quantified by liquid scintillation counting. Each assay is performed three times in duplicate and the results are treated by nonlinear regression analysis allowing the determination of the half-maximal inhibitory concentration (IC50). |  |  |  |

## **Solubility Information**

#### A DRUG SCREENING EXPERT

| Solubility | H2O: 10 mM, Sonication is recommended.                          |  |
|------------|-----------------------------------------------------------------|--|
|            | DMSO: Insoluble,                                                |  |
|            | (< 1 mg/ml refers to the product slightly soluble or insoluble) |  |

#### **Preparing Stock Solutions**

|       | 1mg       | 5mg       | 10mg       |
|-------|-----------|-----------|------------|
| 1 mM  | 1.4011 mL | 7.0056 mL | 14.0113 mL |
| 5 mM  | 0.2802 mL | 1.4011 mL | 2.8023 mL  |
| 10 mM | 0.1401 mL | 0.7006 mL | 1.4011 mL  |
| 50 mM | 0.028 mL  | 0.1401 mL | 0.2802 mL  |

Please select the appropriate solvent to prepare the stock solution, according to the solubility of the product in different solvents. Please use it as soon as possible.

#### Reference

Davidson RN, et al. ParomomycinTrans R Soc Trop Med Hyg, 2009, 103(7), 653-660.

Xu G, Li T, Chen J, et al. Autosomal dominant retinitis pigmentosa-associated gene PRPF8 is essential for hypoxia-induced mitophagy through regulating ULK1mRNA splicing. Autophagy. 2018, 14(10): 1818-1830 Sun Y, Wu J, Shen B, et al.Discovery of TRPV4-Targeting Small Molecules with Anti-Influenza Effects Through Machine Learning and Experimental Validation.International Journal of Molecular Sciences.2025, 26(3): 1381. Simon L. Croft, et al. Clin Microbiol Rev, 2006, 19(1), 111-126

Li Zhu, Ruonan Liu, Tangrong Liu, Xuan Zou, Zhe Xu, Huashi Guan. A novel strategy to screen inhibitors of multiple aminoglycoside-modifying enzymes with ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry[]]. Journal of Pharmaceutical and Biomedical Analysis. 2019 Feb 5;164:520-527.

Inhibitor · Natural Compounds · Compound Libraries · Recombinant Proteins

This product is for Research Use Only. Not for Human or Veterinary or Therapeutic Use

Tel:781-999-4286 E\_mail:info@targetmol.com Address:36 Washington Street,Wellesley Hills,MA 02481

Page 2 of 2 www.targetmol.com