# Data Sheet (Cat.No.T1525)



### Ritonavir

## **Chemical Properties**

CAS No.: 155213-67-5

Formula: C37H48N6O5S2

Molecular Weight: 720.94

Appearance: no data available

Storage: Powder: -20°C for 3 years | In solvent: -80°C for 1 year



## **Biological Description**

| Description   | Ritonavir (ABT 538) is a peptidomimetic agent that inhibits both HIV-1 and HIV-2 proteases. Ritonavir is highly inhibited by serum proteins but boosts the effect of other HIV proteases by blocking their degradation by cytochrome P450.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Targets(IC50) | Apoptosis,HIV Protease,SARS-CoV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| In vivo       | Ritonavir is a potent inhibitor of CYP3A-mediated biotransformation (terfenadine hydroxylation, IC50 of 0.14 mM; 17alpha-ethynylestradiol 2-hydroxylation, IC50 of 2 mM; nifedipine oxidation, IC50 of 0.07 mM). Ritonavir is a a potent inhibitor of CYP3A4-mediated testicular 6β-hydroxylation (Ki: 19 nM), and also inhibited hydroxylation by toluenesulfonylurea (IC50: 4.2 μM). Ritonavir also inhibited CYP2D6 (IC50: 2.5 mM) and CYP2C9/10 (IC50: 8.0 mM)-mediated responses. Ritonavir Ritonavir increased the cellular activity of uninfected human PBMC cultures. Ritonavir inhibited p-glycoprotein-mediated saquinavir solubilization (IC50: 0.2 μM), suggesting that Ritonavir has a high affinity for p-glycoprotein. Ritonavir significantly inhibited the metabolism of human hepatic microsomes ABT-378 (Ki: 13 nM). Ritonavir binding to ABT-378 (in 3:1 and 29:1 ratios) was able to inhibit CYP3A (IC50: 1.1 and 4.6 μM). In cultures of uninfected human PBMCs, Ritonavir significantly reduced the susceptibility of PBMCs to apoptosis (associated with low levels of caspase-1 expression), decreased caspase-3 activity, and reduced membrane-bound protein staining. Ritonavir inhibited the induction of tumor necrosis factor produced by PBMCs and monocytes at nontoxic concentrations in a time- and |
|               | dose-dependent manner.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## **Solubility Information**

| Solubility | DMSO: 50 mg/mL (69.35 mM),Heating is recommended.               |  |  |
|------------|-----------------------------------------------------------------|--|--|
|            | Ethanol: 7.2 mg/mL (9.99 mM), Sonication is recommended.        |  |  |
|            | (< 1 mg/ml refers to the product slightly soluble or insoluble) |  |  |

Page 1 of 2 www.targetmol.com

#### **Preparing Stock Solutions**

|       | 1mg       | 5mg       | 10mg       |
|-------|-----------|-----------|------------|
| 1 mM  | 1.3871 mL | 6.9354 mL | 13.8708 mL |
| 5 mM  | 0.2774 mL | 1.3871 mL | 2.7742 mL  |
| 10 mM | 0.1387 mL | 0.6935 mL | 1.3871 mL  |
| 50 mM | 0.0277 mL | 0.1387 mL | 0.2774 mL  |

Please select the appropriate solvent to prepare the stock solution, according to the solubility of the product in different solvents. Please use it as soon as possible.

#### Reference

Eagling VA, et al. Br J Clin Pharmacol, 1997, 44(2), 190-194.

Cheng C, Ji Z, Sheng Y, et al. Aphthous ulcer drug inhibits prostate tumor metastasis by targeting IKK/TBK1/NF-KB signaling. Theranostics. 2018, 8(17): 4633

Wu Y, Chu L, Yang H, et al. Simultaneous Determination of 6 Antiretroviral Drugs in Human Hair Using an LC-ESI+-MS/MS Method: Application to Adherence Assessment. Therapeutic Drug Monitoring. 2021, 43(6): 756-765.

Kumar GN, et al. J Pharmacol Exp Ther, 1996, 277(1), 423-431.

Fical L, Khalikova M, Kočová Vlčková H, et al. Determination of Antiviral Drugs and Their Metabolites Using Micro-Solid Phase Extraction and UHPLC-MS/MS in Reversed-Phase and Hydrophilic Interaction Chromatography Modes. Molecules. 2021, 26(8): 2123.

Weichold FF, et al. J Hum Virol, 1999, 2(5), 261-269.

Drewe J, et al. Biochem Pharmacol, 1999, 57(10), 1147-1152.

Kumar GN, et al. Drug Metab Dispos, 1999, 27(8), 902-908.

Fical L. Vývoj UHPLC-MS/MS metody pro analýzu vybraných antivirotik v HILIC a RP módu[J]. 2020

Chu, Liuxi, et al. Simultaneous quantitation of zidovudine, efavirenz, lopinavir and ritonavir in human hair by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry [J]. Journal of Chromatography B . 2018 Oct 15;1097-1098:54-63.

Fical L, Khalikova M, Kočová Vlčková H, et al. Determination of Antiviral Drugs and Their Metabolites Using Micro-Solid Phase Extraction and UHPLC-MS/MS in Reversed-Phase and Hydrophilic Interaction Chromatography Modes [J]. Molecules. 2021, 26(8): 2123.

 $\textbf{Inhibitor} \cdot \textbf{Natural Compounds} \cdot \textbf{Compound Libraries} \cdot \textbf{Recombinant Proteins}$ 

This product is for Research Use Only. Not for Human or Veterinary or Therapeutic Use

Tel:781-999-4286 E\_mail:info@targetmol.com Address:36 Washington Street, Wellesley Hills, MA 02481

Page 2 of 2 www.targetmol.com