Data Sheet (Cat.No.T4613)

Arg-Gly-Asp TFA (99896-85-2(free base))

Chemical Properties

CAS No.:

Formula: C14H23F3N6O8

Molecular Weight: 460.36

Appearance: no data available

keep away from moisture

Storage: Pure form: -20°C for 3 years | In solvent: -80°C for 1

year

F	NH	0	
- 1		ll ll	H
r — r	HN N	~\^ _\ /	N N OH
\downarrow	H	H	
но 🔨 о		NH ₂	• 🔥 •
			о - он

Biological Description

Description	Arg-Gly-Asp TFA (99896-85-2(free base)) (RGD Trifluoroacetate) is a tripeptide that effectively triggers cell adhesion, addresses certain cell lines and elicits specific cell responses; binds to integrins.
Targets(IC50)	Integrin
In vitro	RGD Trifluoroacetate is the most effective and most often employed peptide sequence for stimulated cell adhesion on synthetic surfaces. There are 24 integrins binding to ECM molecules in a RGD dependent manner: $\alpha 3\beta 1$, $\alpha 5\beta 1$, $\alpha 8\beta 1$, $\alpha 10\beta 3$,

Solubility Information

Solubility	DMSO: 55 mg/mL (119.47 mM), Sonication is recommended.	
	(< 1 mg/ml refers to the product slightly soluble or insoluble)	

Preparing Stock Solutions

	1mg	5mg	10mg
1 mM	2.1722 mL	10.8611 mL	21.7221 mL
5 mM	0.4344 mL	2.1722 mL	4.3444 mL
10 mM	0.2172 mL	1.0861 mL	2.1722 mL
50 mM	0.0434 mL	0.2172 mL	0.4344 mL

Please select the appropriate solvent to prepare the stock solution, according to the solubility of the product in different solvents. Please use it as soon as possible.

Page 1 of 2 www.targetmol.com

Reference

Hersel U, et al. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003 Nov;24(24):4385-415.

Yuan Q, Gu J, Zhang J, et al. MyD88 in myofibroblasts enhances colitis-associated tumorigenesis via promoting macrophage M2 polarization. Cell Reports. 2021 Feb 2;34(5):108724. doi: 10.1016/j.celrep.2021.108724. Yuan Q, Gu J, Zhang J, et al. MyD88 in myofibroblasts enhances colitis-associated tumorigenesis via promoting macrophage M2 polarization[J]. Cell Reports . 2021, 34(5): 108724.

Inhibitor · Natural Compounds · Compound Libraries · Recombinant Proteins

This product is for Research Use Only· Not for Human or Veterinary or Therapeutic Use

Tel:781-999-4286 E_mail:info@targetmol.com Address:36 Washington Street,Wellesley Hills,MA 02481

Page 2 of 2 www.targetmol.com