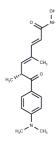
Data Sheet (Cat.No.T6270)

Trichostatin A

Chemical Properties

CAS No.: 58880-19-6


Formula: C17H22N2O3

Molecular Weight: 302.37

Appearance: no data available

Storage: store at low temperature

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

Biological Description

Biological Description				
Description	Trichostatin A (TSA), a natural derivative of diene isohydroxamic acids, is a specific and reversible histone deacetylase inhibitor (IC50=1.8 nM) that induces hyperacetylation of core histones to regulate chromatin structure.			
Targets(IC50)	HDAC			
In vitro	METHODS : Eight breast cancer cells MCF-7, T-47D, ZR-75-1, BT-474, MDA-MB-231, MDA-MB-453, CAL 51 and SK-BR-3 were treated with Trichostatin A (10-12 -10-5 M) for 96 h. The viability of the cells was determined by SRB. Cell viability was determined by SRB RESULTS : Trichostatin A inhibited the proliferation of eight breast cancer cell lines with a mean IC50=124.4±120.4 nM (range 26.4-308.1 nM). [1] METHODS : Esophageal squamous cell carcinoma cells EC9706 and EC1 were treated with Trichostatin A (0.3-1 μM) for 48 h. Apoptosis was detected using Flow Cytometry. RESULTS : There was no significant increase in the percentage of early apoptosis at 0.3 and 0.5 μM Trichostatin A doses. However, 1.0 μM Trichostatin A treatment significantly induced early apoptosis compared with control. In addition, the percentage of mid- and late-stage apoptosis increased in a concentration-dependent manner. [2] METHODS : Esophageal squamous cell carcinoma cells EC9706 and EC1 were treated with Trichostatin A (0.3-1 μM) for 60 min, and the expression levels of target proteins were detected using Western Blot.			
	RESULTS : Trichostatin A decreased the protein levels of PI3K as well as p-Akt and p-ERK1/2 in a dose-dependent manner. acetylation of histone H4 was increased in a concentration-dependent manner. [2]			
In vivo	METHODS: To assay antitumor activity in vivo, Trichostatin A (500 μg/kg) was injected subcutaneously into rats with NMU-induced mammary carcinoma tumors once daily for four weeks. RESULTS: Trichostatin A showed significant antitumor activity in vivo. tumors in Trichostatin A-treated rats had benign phenotypes, fibroadenomas or tubular adenomas, suggesting that the antitumor activity of Trichostatin A may be attributable to induction of differentiation. [1] METHODS: To assay antitumor activity in vivo, Trichostatin A (0.5-1 mg/kg twice weekly) and Quercetin (10 mg/kg three times weekly) were injected intraperitoneally into nude mice bearing human lung adenocarcinoma tumor A549 for thirteen weeks. RESULTS: High-dose Trichostatin A significantly inhibited tumor growth, while low-dose Trichostatin A and Quercetin alone had no effect. However, the combination of low-dose			

Page 1 of 3 www.targetmol.com

	Trichostatin A and Quercetin significantly inhibited tumor growth. [3]				
Kinase Assay	In vitro HDAC activity: Total cellular extracts are prepared from each breast cancer cell line (MCF-7, T-47D, ZR-75-1, BT-474, MDA-MB-231, MDA-MB-453, CAL 51, or SK-BR-3). A 20 μ L crude cell extract (~2.5 ×105 cells), in the presence of varying concentrations of Trichostatin A in 0.1% (v/v) ethanol or 0.1% (v/v) ethanol as vehicle control, are incubated for 60 minutes at 25 °C with 1 μ L (~1.5 × 106 cpm) of [3H]acetyl-labeled histone H4 peptide substrate (NH2-terminal residues 2-20) that has been acetylated with [3H]acetic acid, sodium salt (3.7 GBq/mmol) by an in vitro incorporation method. Each 200 μ L reaction is quenched with 50 μ L of 1 M HCl/0.16 M acetic acid and extracted with 600 μ L of ethyl acetate, and released [3H]acetate is quantified by scintillation counting. IC50 values are determined graphically using nonlinear regression to fit inhibition data to the appropriate dose-response curve.				
Cell Research	Cells are exposed to various concentrations of Trichostatin A for 96 hours. After treatment, cell proliferation is estimated using the sulforhodamine B colorimetric assay. Cell viability is determined by trypan blue exclusion. (Only for Reference)				

Solubility Information

Solubility	DMSO: 50 mg/mL (165.36 mM),Sonication is recommended.		
	Ethanol: 3 mg/mL (9.92 mM), Sonication is recommended.		
	(< 1 mg/ml refers to the product slightly soluble or insoluble)		

Preparing Stock Solutions

	1mg	5mg	10mg
1 mM	3.3072 mL	16.536 mL	33.0721 mL
5 mM	0.6614 mL	3.3072 mL	6.6144 mL
10 mM	0.3307 mL	1.6536 mL	3.3072 mL
50 mM	0.0661 mL	0.3307 mL	0.6614 mL

Please select the appropriate solvent to prepare the stock solution, according to the solubility of the product in different solvents. Please use it as soon as possible.

Page 2 of 3 www.targetmol.com

Reference

Vigushin DM, et al. Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res. 2001 Apr;7(4):971-6.

Wang C, Huang M, Lin Y, et al.ENO2-derived phosphoenolpyruvate functions as an endogenous inhibitor of HDAC1 and confers resistance to antiangiogenic therapy. Nature Metabolism. 2023: 1-22.

Xu C, Zhao W, Peng L, et al.PRDM14 extinction enables the initiation of trophoblast stem cell formation. Cellular and Molecular Life Sciences. 2024, 81(1): 208.

Xu W, Wang Z, Liu T, et al.Eurycomanone inhibits osteosarcoma growth and metastasis by suppressing GRP78 expression. Journal of Ethnopharmacology. 2024: 118709.

Liang X L, Ouyang L, Yu N N, et al. Histone deacetylase inhibitor pracinostat suppresses colorectal cancer by inducing CDK5-Drp1 signaling-mediated peripheral mitofission. Journal of Pharmaceutical Analysis. 2023 Ma J, et al. Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and promotes apoptosis of esophageal squamous cell lines. Mol Med Rep. 2015 Jun; 11(6):4525-31.

Guo Q, Jing Y, Gao Y, et al.The PIF1/PIF3-MED25-HDA19 transcriptional repression complex regulates phytochrome signaling in Arabidopsis.New Phytologist.2023

Chan ST, et al. Quercetin enhances the antitumor activity of trichostatin A through upregulation of p53 protein expression in vitro and in vivo. PLoS One. 2013;8(1):e54255.

Su Q, Li T, He P F, et al. Trichostatin A ameliorates Alzheimer's disease-related pathology and cognitive deficits by increasing albumin expression and A β clearance in APP/PS1 mice. Alzheimer's Research & Therapy. 2021 Jan 4;13 (1):7. doi: 10.1186/s13195-020-00746-8.

Huang W, et al. J Biol Chem, 2005, 280(11), 120047-120054.

Avila AM, et al. J Clin Invest, 2007, 117(3), 659-671.

Yuting Meng,Xixi Qian,Li Zhao,Nan Li,Shengjie Wu,Baoan Chen,Tong Sun,Xuerong Wang Trichostatin A downregulates bromodomain and extra-terminal proteins to suppress osimertinib resistant non-small cell lung carcinoma. Cancer Cell International. 2021, 21(1): 1-12.

Zhang L, Shi J, Du D, et al. Ketogenesis acts as an endogenous protective programme to restrain inflammatory macrophage activation during acute pancreatitis. eBioMedicine. 2022, 78: 103959.

Li X, Pan L, Wang B, et al. The Histone Deacetylases HosA and HdaA Affect the Phenotype and Transcriptomic and Metabolic Profiles of Aspergillus niger[J]. Toxins. 2019, 11(9): 520.

Meng Y, Qian X, Zhao L, et al. Trichostatin A downregulates bromodomain and extra-terminal proteins to suppress osimertinib resistant non-small cell lung carcinoma[J]. Cancer Cell International. 2021, 21(1): 1-12.

Li X, Pan L, Wang B, et al. The Histone Deacetylases HosA and HdaA Affect the Phenotype and Transcriptomic and Metabolic Profiles of Aspergillus niger. Toxins. 2019, 11(9): 520.

Xu K, Sun G, Li M, et al. Glibenclamide Targets Sulfonylurea Receptor 1 to Inhibit p70S6K Activity and Upregulate KLF4 Expression to Suppress Non-Small Cell Lung Carcinoma. Molecular cancer therapeutics. 2019, 18(11): 2085-2096.

Xu K, Sun G, Li M, et al. Glibenclamide Targets Sulfonylurea Receptor 1 to Inhibit p70S6K Activity and Upregulate KLF4 Expression to Suppress Non-Small Cell Lung Carcinoma[J]. Molecular cancer therapeutics. 2019, 18(11): 2085-2096

Su Q, Li T, He P F, et al. Trichostatin A ameliorates Alzheimer's disease-related pathology and cognitive deficits by increasing albumin expression and A β clearance in APP/PS1 mice[J]. Alzheimer's Research & Therapy. 2021, 13(1): 1-15.

Du T, Hu X, Hou Z, et al.Re-expression of epigenetically silenced PTPRR by histone acetylation sensitizes RAS-mutant lung adenocarcinoma to SHP2 inhibition. Cellular and Molecular Life Sciences. 2024, 81(1): 1-14.

Inhibitor · Natural Compounds · Compound Libraries · Recombinant Proteins

This product is for Research Use Only. Not for Human or Veterinary or Therapeutic Use

Tel:781-999-4286 E_mail:info@targetmol.com Address:36 Washington Street,Wellesley Hills,MA 02481

Page 3 of 3 www.targetmol.com